出于能源安全和环境原因,尤其是考虑到部署 GW 级反应堆的困难,国际上和英国国内都大力推动 SMR 和 AMR 设计及其商业部署的开发。在许多情况下,这将涉及政府通过英国核能公司 (GBN) 提供的财政和实际支持,该支持已由《2023 年能源法》纳入法定基础。然而,至关重要的是,在支持和开发这些技术的过程中,要充分考虑这些后端操作,以避免可能代价高昂的错误和未来风险,其后果可能会落在英国纳税人的身上,并在未来很长一段时间内承担。一个例子是追求反应堆技术 (Magnox 和 AGR) 1,这导致英国储存了大量辐照石墨,由于其数量庞大、放射性核素复杂且寿命长,管理存在重大问题。2 例如,要想在 21 世纪的反应堆中成功部署石墨,就需要仔细考虑,以避免出现此类问题
萝卜和菠菜的种子来自印度的Banaras印度大学,用于实验。这些种子暴露于Varian独特的6MV辐射的不同剂量(对照,01 Gy,05 Gy和10 Gy),源至表面距离为100 cm,在瓦拉纳西(Varanasi)的Banaras印度大学的剂量率不同。将每个光子剂量独立地施用给两组50种种子,以促进平行实验,如图2所示。1。1.弗里克和丙氨酸剂量计用于绘制剂量并准确确定光子剂量速率。为了确保每次剂量的剂量表均与剂量表一起照射种子。在传播之前,在35°C下使用3.75%次氯酸钠溶液在35°C的溶液中进行表面旋转,持续15分钟,按照参考文献概述的方法,以在受控条件下获得健康的,未感染的幼苗(Telci等人,2011年)。
1)来自A. vasilescu(inpe bucharest)和G.lindström(Univ。汉堡)2)P.J.Griffin等人,Sand92-0094(Sandia Natl。实验室93),私人。comm。1996 3)Konobeyev,Alexander Yu。等。“核数据研究在辐照材料的损伤下,核子的能量高达25 GEV。” 4)Huhtinen,M。和P. A. Aarnio。“ pion诱导硅设备中的位移损伤。” 5)Summers,G。P.,E。A. Burke,P。Shapiro等。“暴露于伽马,电子和质子辐射的半导体中的损伤相关性。” https://doi.org/10.1109/23.273529。6)Huhtinen,M。“模拟硅中的非离子能量损失和缺陷形成。” https://doi.org/10.1016/s0168-9002(02)01227-5。7)Gurimskaya,Yana等。“用质子和中子照射的P型EPI EPI硅垫二极管的辐射损伤。” https://doi.org/10.1016/j.nima.2019.05.062。
光响应性聚合物可通过光图案化方便地用于制造防伪材料。然而,一个尚未解决的问题是环境光和热量会损坏光响应性聚合物上的防伪图案。在此,通过对光响应性共轭聚合物 (MC-Azo) 进行光图案化和热退火,开发了光和热稳定的防伪材料。MC-Azo 在聚合物主链中含有交替的偶氮苯和芴单元。为了制备防伪材料,用偏振蓝光通过光掩模照射 MC-Azo 薄膜,然后在光子印章的压力下进行热退火。该策略生成了一种具有双重图案的高度安全的防伪材料,该材料对阳光和 200°C 以上的热量都很稳定。稳定性的关键在于热退火促进了链间堆积,从而将光响应性 MC-Azo 转化为光稳定材料。稳定性的另一个关键是共轭结构赋予 MC-Azo 良好的热性能。本研究表明,利用热退火促进链间堆积的可光刻共轭聚合物的设计为开发高稳定性和安全性的防伪材料提供了一种新策略。
摘要 — 低增益雪崩二极管(LGAD)用于高粒度定时探测器(HGTD),它将用于升级 ATLAS 实验。首批 IHEP-IME LGAD 传感器由高能物理研究所(IHEP)设计,微电子研究所(IME)制造。三个 IHEP-IME 传感器(W1、W7 和 W8)接受中子辐照,辐照剂量高达 2.5 × 10 15 n eq / cm 2,以研究中子浅碳和深 N++ 层对辐照硬度的影响。以 W7 为参考,W1 施加了额外的浅碳,W8 具有更深的 N++ 层。在Bete望远镜测试中测得的3个IHEP-IME传感器的漏电流、收集电荷和时间分辨率均满足HGTD的要求(在2.5×1015neq/cm2辐照剂量后<125µA/cm2、>4fC和<70ps)。碳层较浅的W1传感器抗辐射能力最强,N++层较深的W8传感器抗辐射能力最差。
我们研究了50 Gy(H 2 O)对辐射敏感的P通道金属 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 磁性晶体效应晶体管,其栅极(RADFET)具有400和1000 nm的氧化物氧化物厚度(RADFETS),并具有0和5 V的栅极。辐照后(ir),在室温下进行自发退火(SA),而在门口没有电压。我们介绍了由MIDGAP技术确定的固定陷阱和开关陷阱的行为,以及在IR和SA期间由电荷泵送技术确定的快速开关陷阱的行为。剂量晶体管的一个非常重要的特征是褪色,它代表了SA期间辐射辐射的阈值电压的恢复。9100小时后的最大褪色约为15%,除了磁氧化物厚度为1000 nm,栅极电压为5V的RADFET,其含量约为30%。提出了一个用于褪色的拟合方程,它很好地拟合了实验褪色值。
飞秒直接激光写入(FS DLW)是在透明介电材料中产生3D光子微结构的强大方法[1,2]。后者在短时间内通过非线性过程吸收FS脉冲的能量,从而在μM规模的辐照面积(损伤轨道)内进行了永久性的材料修饰,从而导致折射率的热变化。激光波导(WGS)最近引起了极大的关注[1]。飞秒脉冲对激光WGS的铭文受益于快速制造时间,高精度,获得各种几何形状和活性材料。对于此类WG,达到了低至中等传播损失。wg激光器代表光子积分电路的构件之一[2]。如果设计正确,它们会受益于单模模式操作,低阈值和高光强度[3]。表面WG可以通过将非线性光学材料沉积导致脉冲激光通过evanescent-Field景偶联而进行功能化[4,5]。
尽管采用多种治疗方法,高风险神经母细胞瘤的治愈率仍仅为 50%,仍然是一项挑战。此前已证明自然杀伤 (NK) 细胞对神经母细胞瘤具有活性,但在临床试验中并未取得一致成功。通过与经改造以表达 CD54、CD80、CD86 和 CD137L 的疫苗(称为 AgN2a 4P)共培养来激活 NK 细胞,研究了 NK 细胞在体外和体内诱导小鼠神经母细胞瘤肿瘤细胞细胞毒性的能力。 NK 细胞和辐照过的 AgN2a 4P 以 1 (NK 细胞):0.5 (AgN2a 4P) 和 1:1 的比例共培养,并与仅 NK 细胞和仅 AgN2a 4P 对照组进行比较,所有组均接受 IL-15/IL-15R a,然后在 1、3、5、7 和 9 天后通过流式细胞术、多重细胞因子分析和体外细胞毒性进行分析。为了研究骨髓移植 (BMT) 后体内接种 AgN2a 4P 的功效,对 C57BL/6 或 B6AJ 接受者进行致死性辐照,然后在 +0 天移植 T 细胞耗竭的 C57BL/6 供体骨髓。然后用 AgN2a 4P 疫苗治疗 BMT 接受者 3 剂,并且过继转移或不过继转移供体 NK 细胞以加速免疫重建。我们小组之前已证明,在体内,施用 3 剂 AgN2a 4P 最为有效。然后,所有接受者均接受 Neuro2a 或 9464D 神经母细胞瘤肿瘤的攻击,并跟踪肿瘤的生长和存活情况。NK:AgN2a 4P 以 1:1 的比例共培养,从第 +0 天到第 +9 天,Ly49D+ NK 的比例从 3% 增加到 34%。在整个共培养期间,pSTAT1 激活率始终保持在 80%-98% 的高水平。与 NK 与 IL-15/IL-15R a 对照相比,NK 细胞在共培养比例为 1:0.5 和 1:1 时释放的 IFN-γ 和 IL-6 水平增加,在 1:1 比例时释放的 CXCL1 水平增加。 NK:AgN2a 4P 比例为 1:0.5 和 1:1 时,与仅使用 IL-15/IL-15R a 的 NK 细胞相比,Neuro2a 和 9464D 神经母细胞瘤细胞的凋亡显著增加。在体内,AgN2a 4P 与供体 NK 细胞的过继转移可诱导抗肿瘤作用,显著减缓肿瘤生长。NK 细胞与工程共刺激疫苗共培养是一种有效的策略,可通过增加 NK 介导的细胞因子产生和细胞毒性来诱导神经母细胞瘤肿瘤细胞凋亡,并增强 BMT 后的抗肿瘤作用。BMT 后使用基于细胞的疫苗可能是增强 NK 细胞对抗神经母细胞瘤活性的有效策略。
频谱也很明显。很明显,2D层正在3D表面进行快速转换,并在光辐射下失去了其特征。从相似的光照射条件下记录的吸收光谱进一步证实了这一方面(图1D)。在图1E中记录的差异吸收光谱中,可以更好地看到吸收中的这些变化。我们还分别用可见光照射了2D和MAPBI 3膜。在相似的辐照时间下,吸收峰没有重大变化(图S4)。在图1 C和D中光辐射过程中的发射和吸收变化表明,沉积在3D钙钛矿上的2D膜在可见的照射下是不稳定的,并且经历了转化。这进一步表明我们创建的2D/3D接口最初会随着持续的照射而消失。我们将2D钙钛矿层的这种不稳定的行为归因于较大阳离子(pea +)从(PEA)2 PBI 4的扩散到散装MAPBI 3中,从而在3D相中导致同质化。
我们研究了50 Gy(H 2 O)对辐射敏感的P通道金属 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 磁性晶体效应晶体管,其栅极(RADFET)具有400和1000 nm的氧化物氧化物厚度(RADFETS),并具有0和5 V的栅极。辐照后(ir),在室温下进行自发退火(SA),而在门口没有电压。我们介绍了由MIDGAP技术确定的固定陷阱和开关陷阱的行为,以及在IR和SA期间由电荷泵送技术确定的快速开关陷阱的行为。剂量晶体管的一个非常重要的特征是褪色,它代表了SA期间辐射辐射的阈值电压的恢复。9100小时后的最大褪色约为15%,除了磁氧化物厚度为1000 nm,栅极电压为5V的RADFET,其含量约为30%。提出了一个用于褪色的拟合方程,它很好地拟合了实验褪色值。