摘要 — 本文报告了一种完全集成但隔离的低压 (LV) CMOS 与高压 (HV) 横向功率 MOSFET 的设计和工艺流程,该 CMOS 位于 6 英寸 4H-SiC 基板上,用于开发 HV SiC 功率 IC。用于开发功率 IC 的外延堆栈(N + 基板上的 N - 外延/P - 外延)经过优化,以容纳和隔离 HV 器件和电路与 LV 器件和电路。本文报告的器件是在位于加利福尼亚州圣何塞的 150 毫米生产级 Analog Devices Inc. (ADI) Hillview 制造工厂制造的。本文中的 HV 横向 NMOSFET 在栅极源电压 (V gs ) 为 25V 时表现出 620V 的击穿电压 (BV) 和 9.73 mΩ⸱cm 2 的特定导通电阻 (R on,sp )。采用单栅极氧化物和欧姆工艺制造 HV NMOS 和 LV CMOS 器件和电路。实施了结隔离,以隔离高压和低压块,从而设计高压电源 IC。最后,这项工作实施了高压三金属层后端 (BEOL) 工艺,这是开发可靠和坚固的电源 IC 的必要条件。对于未来的高温应用,器件的静态性能经过表征,并报告高达 200 o C 的温度。
摘要:根据不断扩大的环境问题和不断加强的排放法规,已经研究了电动汽车作为一种运输形式的有效性。电动汽车电池充电器拓扑对于增加电动汽车(EV)的使用至关重要。该研究的电动汽车上的板载电池电池充电器支持SEPIC,谐振逆变器或LLC拓扑,适用于带有48V电池组的附近电动型自行车。为了获得最少的电网电流纹波,还建议使用自适应DC链路电压技术来实现所有电压条件下适当的DC链路电压。充电器还采用了电压同步策略,以确保网格连接和独立模式之间的无缝模式过渡。MATLAB/SIMULINK用于模拟和验证车载充电器。
通讯作者:Geidy E. Serrano,博士横幅Sun Health Research Institute 10515 W Santa Fe Drive,Bldg B,Bldg B,第3佛罗里达州Sun City,AZ 85351 PH:623-832-5608传真:623-832-5681 emage:623-832-5681电子邮件: https://orcid.org/0000-0002-9527-2011运行标题:
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。
将N1拉到低状态时,N2和N1的电压显着低于VE,并导致Q1进行。这使INA进入下图中的虚线橙色箭头所示的逻辑低。低状态信号穿过隔离器,并导致Outa变低。N7处的电压通过蓝色箭头说明的二极管D2的前向偏置。但是,当N1变高时,由于N7和N5处剩余的低级信号,它的电压无法立即返回VCC1的水平,这会导致D1向前偏置。相反,N1升至阻断Q1的必要电势。它一直保持在此级别,直到Q1上的高阻抗使R4可以为隔离器输入INA提供高逻辑,从而释放N6和D3并导致N7升高。只有这样,N1才能返回到VCC1的级别。
目的:该研究研究了外多糖(EPS)产生从酸奶样品中分离出的乳酸菌(LAB)的益生菌潜力。它评估了他们针对食源性病原体的抗菌功效,尤其是大肠杆菌和金黄色葡萄球菌。目的是确定可以用作自然防腐剂和功能性食品中促进健康的益生菌的实验室菌株。方法:从巴基斯坦拉瓦尔品第的家用本地市场收集酸奶样品。使用选择性培养基,革兰氏染色和生化测试将实验室分离并鉴定。使用苯酚硫酸法对EPS产生进行定量。益生菌特性,包括针对大肠杆菌和金黄色葡萄球菌的抗菌活性。使用API链球菌系统对产生最高EPS的菌株在生物化学上表征。 结果:在29个实验室分离株中,有12个被鉴定为显着的EPS生产者,嗜热链球菌,乳酸乳酸菌和发酵酸酯的limosilactobacillus发酵液显示出最高的EPS产生(高达62 µg/ml)。 这些菌株对大肠杆菌和金黄色葡萄球菌表现出强大的抗菌活性,抑制区域范围为2 mm至32.1 mm。 结果证实了这些菌株的双重功能,作为食品中质地增强剂和天然防腐剂。 结论:产生EPS的实验室菌株,尤其是嗜热链球菌,乳酸乳杆菌和发酵乳杆菌,显示出作为益生菌和天然防腐剂的巨大潜力。菌株在生物化学上表征。结果:在29个实验室分离株中,有12个被鉴定为显着的EPS生产者,嗜热链球菌,乳酸乳酸菌和发酵酸酯的limosilactobacillus发酵液显示出最高的EPS产生(高达62 µg/ml)。这些菌株对大肠杆菌和金黄色葡萄球菌表现出强大的抗菌活性,抑制区域范围为2 mm至32.1 mm。结果证实了这些菌株的双重功能,作为食品中质地增强剂和天然防腐剂。结论:产生EPS的实验室菌株,尤其是嗜热链球菌,乳酸乳杆菌和发酵乳杆菌,显示出作为益生菌和天然防腐剂的巨大潜力。他们的抗菌活性和增强食品质地的能力表明它们在食品行业中的适用性可促进健康和改善食品安全。进一步的研究应探索其在不同食品矩阵中的稳定性,以供商业用途。
在弱外侧的极限中,极化是正弦的调节,导致著名的Mollow三重态。19到达外部场的强度与所谓的电子过渡相当的状态后,相应过渡的极化会以更复杂的方式进行调制,从而导致载波狂犬病扭转。20这些引起载体波形的三胞胎,或围绕更高级别(奇数)谐波的Mollow三胞胎。理论上对这一现象进行了研究,以两级系统(TLSS)21-24和涉及双孔电势的1D系统进行了研究。25 - 28虽然这些作品涵盖了许多基础物理学,但它们几乎没有证据表明实验性可行性,专注于理想的TLSS和无限的潜在井。一个例外是27,其中氢分子离子H 2 +的HHG通过模拟显示为HIG,尽管在有限的
该产品通过SPI上的可编程接口提供了可调节的动态大门强度驱动。此外,通过中断引脚报告了高级可编程保护功能作为故障自主管理的,并且电源设备的状态和栅极驱动程序的状态。
分枝杆菌噬菌体是专门感染分枝杆菌属细菌的病毒。目前已分离并鉴定了大量的分枝杆菌噬菌体,为了解其多样性和进化提供了宝贵的见解。这些噬菌体在治疗应用方面也具有巨大的潜力,特别是作为抗生素的替代品来对抗耐药性细菌菌株。在本研究中,我们报告了一种新的分枝杆菌噬菌体 Vic9 的分离和鉴定,该噬菌体使用结核分枝杆菌 mc (2)155 作为宿主菌株。Vic9 被归类为 B 簇的 B2 亚簇。形态学分析显示,Vic9 具有该亚簇的典型噬菌体结构,并形成特征性斑块。噬菌体在 30 分钟内吸附到宿主菌株细胞上,根据一步生长实验,其潜伏期持续约 90 分钟,随后是 150 分钟的生长期,平均产量约为每个受感染细胞 68 个噬菌体颗粒。在宿主范围实验中,Vic9 能有效裂解宿主菌株,并且还表现出裂解结核分枝杆菌 H37Rv 的能力,尽管接种效率较低(EOP ≈ 2 × 10 − 5),这是 B2 噬菌体的典型特征。在其他测试的分枝杆菌种中未观察到裂解。Vic9 的基因组包含 67,543 bp 的双链 DNA 并编码 89 个开放阅读框。尽管 Vic9 与其他 B2 亚簇噬菌体关系密切,但我们的分析揭示了 Vic9 的独特特征,即使在密切相关的噬菌体中也突显了其独特的特性。特别值得注意的是在负责 queuosine 生物合成的基因簇内发现了一个独特的 435 bp 序列,以及在 B1、B2 和 B3 亚簇成员之间的结构盒区(Vic_0033-Vic_0035)内发现了重组事件。这些遗传特征值得进一步研究,因为它们可能揭示噬菌体-细菌相互作用的新机制及其开发新型噬菌体治疗方法的潜力。
© 2024 作者。开放存取 本文根据知识共享署名 4.0 国际许可协议获得许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法定法规允许或超出允许的用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域贡献豁免(http://creativecommons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非在数据的信用额度中另有说明。