骑自行车电池发生故障是时间的过时,并延迟了数据的分析,这是开发新电池化学物质的关键。一个持续的挑战是确定寄生反应的活性,这可以显着影响锂离子电池的性能和寿命。原位电化学量热法是研究这些寄生反应的领先技术。电池循环微量钙化液解决方案将敏感的等温微量钙化与电化学分析相结合。在这项工作中,它用于测量松下NCR18650GA细胞的寄生能力。结果可用于判断细胞质量,有助于主动材料制定,研究添加剂的影响,研究固体电解质相间的形成和生长,以及循环和日历寿命预测模型的输入。
EIEC Enteroinvasive Escherichia coli ESICM European Society of Intensive Care Medicine ETEC Enterotoxigenic Escherichia coli EUA Emergency use authorization FDA Food and Drug Administration GDH Glutamate dehydrogenase GI Gastrointestinal GIPs Gastrointestinal pathogens GPP Gastrointestinal pathogen panel HIV Human immunodeficiency virus HPV Human papillomavirus infection IDSA Infectious Diseases Society of America LAMP Loop-mediated isothermal amplification LCD Local coverage determination LDT Laboratory developed test ME Meningitis/encephalitis MRSA Methicillin resistant staphylococcus aureus MSSA Methicillin sensitive staphylococcus aureus NAAT Nucleic acid amplification test NICE National Institute for Health and Care Excellence NP Nasopharyngeal NPS Nasopharyngeal swabs PCR Polymerase chain reaction PLA Proprietary laboratory analyses PPA Percent positive agreement RNA Ribonucleic acid RP Respiratory pathogen RP2 Respiratory pathogen panel 2 RPP Respiratory pathogen panel RSV Human respiratory syncytial virus RT-PCR Reverse transcriptase polymerase chain reaction RV+ Respiratory virus plus核酸测试RVP呼吸病毒面板SARS-COV- 2严重的急性呼吸综合症冠状病毒2 CCM CARICAR CARE医学学会Shea Shea医疗保健流行病学学会SOT SOT固体器官移植SSTI SSTI SSTI STI皮肤和软组织感染STEC SHIGA TECE SHIGA TESCAINIA
聚合酶链式反应 (PCR) 和环介导等温扩增 (LAMP) 等核酸扩增方法是强大的分子生物学工具,广泛应用于基础生物学研究、临床诊断、检验检疫等各个领域。为了实时或通过扩增后分析(如熔解曲线分析)检测闭管系统中的 DNA 扩增产物,需要将荧光报告子添加到反应混合物中。1 这些报告子主要分为两类:一类是通常用荧光团标记的特异性 DNA 探针,2 另一类是双链 DNA 结合染料,例如 EtBr、3 SYBR Green I (SGI)、4 EvaGreen、5 和 Sytox Green。6 基于探针的报告系统具有特异性,适用于利用不同荧光团进行多重检测。然而,合成这些双链 DNA 报告子的成本很高,并且需要大量合成。
作为等温、无酶信号放大策略,杂交链式反应 (HCR) 和催化发夹组装 (CHA) 具有放大效率高、生物相容性好、反应温和、操作简便等优点。因此,它们已广泛应用于基于 DNA 的生物传感器,用于检测小分子、核酸和蛋白质。在这篇综述中,我们总结了采用典型和先进的 HCR 和 CHA 策略的基于 DNA 的传感器的最新进展,包括分支 HCR 或 CHA、局部 HCR 或 CHA 和级联反应。此外,还讨论了在生物传感应用中实现 HCR 和 CHA 的瓶颈,例如高背景信号、比酶辅助技术更低的放大效率、动力学慢、稳定性差以及细胞应用中 DNA 探针的内化。
乳制品行业广泛利用了清洁(CIP)系统清洁和消毒,采用闭路电路清洁方法,可以清洁和消毒设备,筒仓,管道和等温油箱,而无需拆卸。此过程在启动生产过程时提高了安全性和质量。这项研究采用了定性方法,采用书目搜索方法,其中包括咨询各种研究和文档,例如研究论文,报告,论文,专着,研究和科学文章。这项研究的主要目的是证明在乳制品行业实施CIP化学清洁中心的影响。调查结果表明,通过CIP Central进行清洁是一种有效的替代方法,可确保将微生物清除至不可检测的水平,同时减少消毒步骤的持续时间并降低能耗。这些结果为组织节省了大量成本。
疟疾中耐药性的兴起需要探索新颖的治疗策略。靶向表观遗传途径可以开放新的有前途的治疗途径。在这项研究中,我们关注PF BDP1,这是恶性疟原虫中必不可少的溴脱域蛋白。 利用泛选择性溴结构域抑制剂MPM6,我们确定了有效的初始命中率,然后将其开发到纳摩尔粘合剂中。 通过虚拟对接,等温滴定量热法和X射线晶体学的结合,我们阐明了新抑制剂与PF BD1的分子相互作用。 我们的发现包括PF BD1和PV BD1与这些抑制剂的第一个共晶结构,提供了对其结合机制的见解。 使用PF BDP1在恶性疟原虫中的有条件敲低的进一步验证表现出对抑制剂的寄生虫敏感性,强调了其作为针对疟疾的靶向治疗方法的潜力。在这项研究中,我们关注PF BDP1,这是恶性疟原虫中必不可少的溴脱域蛋白。利用泛选择性溴结构域抑制剂MPM6,我们确定了有效的初始命中率,然后将其开发到纳摩尔粘合剂中。通过虚拟对接,等温滴定量热法和X射线晶体学的结合,我们阐明了新抑制剂与PF BD1的分子相互作用。我们的发现包括PF BD1和PV BD1与这些抑制剂的第一个共晶结构,提供了对其结合机制的见解。使用PF BDP1在恶性疟原虫中的有条件敲低的进一步验证表现出对抑制剂的寄生虫敏感性,强调了其作为针对疟疾的靶向治疗方法的潜力。
2010 年,Sorgic 和 Radakovic [8] 对浸没在矿物油中的变压器进行了二维模拟,以将冷却系统与油驱动和强制油配置进行比较。2012 年,Tsili 等人建立了一种方法来开发三维模型并预测热点的温度 [9]。这一年,Skillen 等人对一个不对称非等温流二维模型进行了 CFD 模拟,以表征具有锯齿形冷却的变压器绕组中的油流 [10]。2014 年,Yatsevsky 对浸没在自然对流油中的变压器进行了二维模拟,包括铁心、油箱和散热器,以预测热点。所开发的模型表现出良好的性能,并通过实验进行了验证 [11]。最近,Torriano 等人在一种采用自然对流冷却(ON)的比例盘式电力变压器中开发了三维传热模型 [12]。
当前的癌症检测方法在很大程度上取决于相应癌症抗原的成分分析。缺乏卵巢癌筛查的有效且简单的临床方法,这阻碍了早期对卵巢癌及其治疗的鉴定。为了开发一种简单而快速的方法来定量分析卵巢癌,我们开发了一种基于DNA链位移的方法,并在5分钟内通过一步等温反应在5分钟内完成了miR-21的快速检测。荧光强度轨迹与miR-21浓度在100 fm – 100 nm的范围内具有良好的线性关系,下限为6.05 pm。这种检测方法简单,更快且准确。此外,它可以通过更改toehold的预设序列来检测其他癌症的miRNA生物标志物。
用于结合高光谱分辨率和量子效率的X射线光谱的热检测器。这些“微钙化器”通过感测小吸收结构的温度升高来测量吸收单个光子中释放的能量。这种设备的最终能量分辨率受热力学和等温浴之间的热链连接中的热力学功率波动的限制,并且原则上可以低至1 eV。由于噪声贡献(例如热敏电阻中的过量(L/F)噪声)以及能量转换为声子,因此真实设备的性能被降低。我们在这里报告了在存在噪声的情况下,在温度计,X射线吸收和热化,制造技术和检测器优化方面的最新进展。这些改进使我们能够生产出光谱分辨率为17 eV FWHM的设备,该设备在6 keV下测量。
