摘要 - 材料通过称为腐蚀的过程自然衰减,在该过程中它们与周围环境反应。可以通过施加多种腐蚀抑制剂来防止低碳钢在盐酸(HCL)中腐蚀。在这项工作中,新型的单核锰配位络合物[MN(HBPZ)2(NCS)2]显示出有希望的特性,使其适合预防腐蚀应用。在本实验中,使用不同的实验方法来评估其抑制潜力。例如,体重减轻(WL)显示腐蚀速率较高的浓度下降了96%。eis是证据表明浓度效应增加了R CT并减少C DL。此外,极化检查表明C3是一种混合型抑制剂。另外,还使用了量子机械和统计方法,还确定了温度的效果。此外,还使用并计算了热力学方程。吸附遵循Langmuir等温模型,模拟方法证实了复合物的自发吸附性质,从而改善了表面表征的结果。
本研究报道了在非常规 Nd 0.8Sr 0.2NiO 2 无限层超导薄膜中,磁场诱导超导体-金属转变 (SMT) 伴随量子格里菲斯奇异性 (QGS) 的出现。该系统在平面和垂直磁场下均表现出各向同性的 SMT 特征。重要的是,在对等温磁阻曲线进行缩放分析后,获得的有效动态临界指数在接近零温临界点 B c 时表现出发散行为,从而识别了 QGS 特性。此外,与 QGS 伴随的量子涨落可以定量解释 SMT 相边界中平面和垂直磁场中上临界场在零温附近上升的现象。这些特性表明 Nd 0.8Sr 0.2NiO 2 超导薄膜中的 QGS 是各向同性的。此外,在较高的磁场下,金属状态的电阻-温度关系 R ð T Þ 在 2 – 10 K 范围内表现出 ln T 依赖性,T 2
摘要:在这项工作中,我们探索了镓作为一种有效的相变材料在热管理应用中的热性能。将镓制造的散热器的热存储和散热与传统的相变散热器进行了比较。比较结果显示,由于高密度、热导率和熔化潜热,相变过程中的温度可能降低 50 倍(80 K 对 1.5 K)。镓在瞬时加热时会产生浅热梯度,从而产生近乎等温的过程。使用集中总和参数的计算估计能够提供简单的模型来预测结果。基于镓的相变装置兼具体积小、整个装置温降小、制造和设计简单以及高能量存储应用等特点。DOI:10.1061/(ASCE)AS.1943-5525.0001150。本作品根据知识共享署名 4.0 国际许可证条款提供,https://creativecommons.org/licenses/by/4.0/ 。
摘要:HIV-1 Nucleocapsid蛋白7(NC)是有效的抗逆转录病毒治疗的潜在靶标,这是由于其在病毒复制中的核心作用,主要与核酸(NA)伴侣活性有关,并且对耐药性的敏感性较低。通过筛选化合物库,我们识别了一种已知的碳水化合物结合剂CN14_17氨基吡咯酸化合物CN14_17,该化合物抑制了低微摩尔范围内的NC伴侣蛋白活性。与大多数可用的NC抑制剂不同,CN14_17完全阻止了NC诱导的互补NA序列的退火。使用荧光测定和等温滴定量热法,我们发现CN14_17与NC竞争与NAS结合,优先针对单链序列。分子动力学模拟证实了与CTAR结合的结合优选发生在浓度浓度的鸟嘌呤单链序列中。最后,CN14_17在低微摩尔范围内表现出抗逆转录病毒活性,尽管具有中等的治疗指数。总体而言,CN14_17可能是新的NC抑制剂类别的祖先。关键字:HIV-1,核素蛋白,NCP7,抑制剂,荧光,抗病毒
poly(pekk)是热塑性(Paek)(Paek)(Paek)聚合物家族的一部分,具有出色的机械性能和耐化学性能,使其成为高强度复合材料的基质的有趣候选者。在高性能应用中,对材料特性进行彻底的了解至关重要,在热塑性塑料的情况下,结晶度起着至关重要的作用。本评论论文涵盖了PEKK和CF/PEKK复合材料的结晶形态和结构,在等热和动态条件下的结晶行为和动力学,以及它们在不同等级的PEKK中如何在不同等级的pekk中变化,而邻苯甲酸/同粒性含量率不同。在CF/PEKK复合材料的情况下,讨论了纤维 - 矩阵界面上的晶体结构发育的影响,以及碳纤维夹杂物对结晶动力学的影响。提供和讨论了文献中可用的几种结晶动力学和经晶模型。还考虑了CF/PEKK复合材料的当前局限性和未来方向,涵盖了制造技术,例如高压灭绝,自动胶带放置和3D打印。本文在相关时进行了比较,与经过文献稀疏的文献相关的pekk和CF/Pekk的讨论时,都会与经过对PEKK和CF/PEKK的讨论进行比较。
7 设备利用率 323 7.1 简介 323 7.2 现代挤压设备 323 7.2.1 挤压机 324 7.2.2 辅助设备 327 7.2.3 挤压工艺和参数优化 330 7.3 挤压机要求 331 7.3.1 可靠性 332 7.3.2 力学 332 7.3.3 液压 335 7.3 4 控制和监控 335 7.4 等温挤压 340 7.4.1 工艺优化 342 7.4.2 全面工艺优化所需的特性 343 7.4.3 工艺优化结果 345 7.5 专家系统 351 7.5.1 应用于挤压机的专家系统 353 7.5.2 典型系统描述 354 7.6 方面模具设计和修正 357 7.6.1 模具堆叠考虑因素 360 7.6.2 模具设计步骤 360 7.6.3 修改模具前要考虑的工艺因素 370 7.7 工具故障 374 7.7.1 特性 374 7.7.2 预防措施 374 7.8 废料损失 375 7.8.1 挤压损失 376
摘要:几种高级电解质(主要是基于乙醚的)在高能密度锂金属电池中表现出了有希望的电化学性能。这项工作评估了其在滥用条件下的热稳定性,以阐明其安全限制与通常在锂离子电池中使用的碳酸盐电解质相比。与LINI 0.8 MN 0.1 CO 0.1 O 2阴极和超高电压(≤4.8V)和温度(≤300°C)的LI-Metal阳极一起评估电解质稳定性。通过等温微量钙化和差异扫描量热法监测热量释放的发作和程度。大多数基于醚的电解质显示出对碳酸盐电解质的热弹性提高。虽然极端电压严重破坏了基于以太的电解质的稳定,但基于磷酸盐的局部高浓度电解质在碳酸盐电解质上表现出改善的稳定性,即使在60°C下,在第一个电荷过程中的热分析也可能不足以使稳定的稳定性稳定地识别出较长期的电解质,但这些电解质的长期稳定性不足,但这些均可及时的稳定性。电解质设计。t
我们在固态中提出了循环制冷,在II型超导体中采用了磁场涡流气体(也称为频线)作为冷却剂。通过设想由绝热和等温臂组成的赛马几何形状来实现的制冷周期,并刻在II型超导体中。通过在样品中施加外部电流(在Corbino几何形状中),可以实现赛马场中的隆克子的引导传播。磁场的梯度设置在赛道上,使一个人可以绝热冷却并加热伏克子,随后将热量与冷热储层交换。我们表征了S -Wave和D波配对对称性的热力学上的制冷周期的稳态状态,并呈现其功绩的形式,例如传递的冷却能力,以及性能的系数。我们的冷却原理可以通过在常规稀释冰箱中可实现的基础温度下方进行局部冷却来提供明显的冷却,以实现芯片微冰期目的。我们估算单位区域的冷却功率的NW / mm 2,假设隧道与〜m µm 2 < / div>
图 4:a) Ge 15 Te 85 玻璃在 105 °C 下退火一段时间后进行的电阻率上扫描测量得出的虚拟温度 𝑇𝑇 𝑓𝑓 𝜌𝜌 的演变。𝑇𝑇 𝑓𝑓 𝜌𝜌 数据与 TNM-AG 模型(黑线)精确拟合,并长时间向退火温度 105 °C 收敛,从而证实了稳定性。b) 将在 105 °C 恒温保持期间获得的电阻率数据(浅蓝色点)与从 𝑇𝑇 𝑓𝑓 𝜌𝜌(红色圆圈)和 TNM-AG 模型(黑线)计算出的电阻率值进行比较(a)。实验电阻率数据与玻璃松弛模型的预测结果非常吻合。请注意,初始 𝑇𝑇 𝑓𝑓 𝜌𝜌 低于图 2 所示的 𝑇𝑇 𝑓𝑓 𝐻𝐻。这是由于在 vdP 样品上沉积覆盖层期间向硫族化物引入了热量。
CAES 技术的比较和替代方案 在讨论绝热 CAES(例如 Storelectric 提出的技术)时,了解不同类型的 CAES 非常重要 — 本质上是传统、等温和绝热,以及这些类型的变体。它们的性质非常不同,尤其是绝热 CAES 经常与等温 CAES 混淆,例如 Lightsail、SustainX 和 General Compression 提出的 CAES。事实上,两者根本不同。请注意,所有效率均引用电网到电网和寿命,而电池通常引用端到端 [忽略辅助负载] 和第 1 天 [忽略退化]。还要注意,电池往往会引用不包括土地、电网连接、开发成本等的安装成本,而这些都包含在 Storelectric 的所有估算中。 CAES 压缩空气能储能 (CAES) 使用多余或廉价的能源(例如来自电网或可再生能源发电)将空气压缩至高压 — 通常为 70bar。当再次需要能量时,空气被释放来为涡轮机提供动力(或辅助动力),从而再生电能。由于压缩空气的能量密度不高,需要大量的空气,因此采用地质储存;现有的CAES 采用盐穴,这是目前用于大量储存天然气和其他碳氢化合物、危险废物等的众所周知的技术。尽管欧洲近 1/3 的天然气储量都存储在盐穴中,但从未发生过盐穴坍塌的情况。盐穴是人工建造的,位于盐盆内,世界各地都有。传统CAES 将空气压缩到 70bar 时,温度会升高到 ~650 o C。但空气不能储存在高于 ~42 o C 的盐穴中,否则盐穴会恶化。因此,传统的CAES 会将压缩热浪费在冷却塔中。然而,在大约环境温度下从 70bar 膨胀会使空气冷却至约 -150 o C。这不仅会冻结环境,还会冻结设备,从而破坏设备,因此需要重新加热。传统的 CAES 通过燃烧气体来吸收膨胀热量。Huntorf 和 McIntosh 使用的方法是将压缩空气送入燃气轮机,从而使涡轮机更省油。但它仍然燃烧同等规模发电站 50-60% 的天然气(对于 McIntosh;Huntorf 为 60-70%),其往返效率(所有能量输出:输入)最多为 50%(Huntorf 为 42%),尽管更现代的设备希望达到约 54%。由于膨胀是通过经过特殊改造的涡轮机进行的,因此传统的 CAES 仅适用于固定尺寸。Storelectric 的 CCGT CAES 是传统的(“CCGT” 因为它基于联合循环发电站的设计),但具有以下优点:
