最初是克林顿实验室的橡树岭国家实验室(ORNL)成立于1943年,以开创一种生产和分离p的方法。今天,ORNL是最大的DOE科学和能源实验室。 ORNL的使命是提供科学发现和技术突破,这些发现将加速清洁能源和全球安全方面的解决方案,同时为国家创造经济机会。 在中子散射,高性能计算,高级材料以及核科学与工程学的签名优势上,ORNL的研发(R&D)投资组合包括使用中子的前沿科学;领导级计算,数据基础架构和科学数据分析;能源应用的高级材料;下一代核电;生物,环境和地球系统科学;用于建筑物,运输,制造业以及能源产生和消费的可持续解决方案;医学,研究,能源探索和工业的同位素;以及国家安全的科学技术。今天,ORNL是最大的DOE科学和能源实验室。ORNL的使命是提供科学发现和技术突破,这些发现将加速清洁能源和全球安全方面的解决方案,同时为国家创造经济机会。 在中子散射,高性能计算,高级材料以及核科学与工程学的签名优势上,ORNL的研发(R&D)投资组合包括使用中子的前沿科学;领导级计算,数据基础架构和科学数据分析;能源应用的高级材料;下一代核电;生物,环境和地球系统科学;用于建筑物,运输,制造业以及能源产生和消费的可持续解决方案;医学,研究,能源探索和工业的同位素;以及国家安全的科学技术。ORNL的使命是提供科学发现和技术突破,这些发现将加速清洁能源和全球安全方面的解决方案,同时为国家创造经济机会。在中子散射,高性能计算,高级材料以及核科学与工程学的签名优势上,ORNL的研发(R&D)投资组合包括使用中子的前沿科学;领导级计算,数据基础架构和科学数据分析;能源应用的高级材料;下一代核电;生物,环境和地球系统科学;用于建筑物,运输,制造业以及能源产生和消费的可持续解决方案;医学,研究,能源探索和工业的同位素;以及国家安全的科学技术。
提出了一种确定10-5水平动力学束能的方法,与传统方法相比,该方法可以提高一个多个数量级的改进。,在稀有的同学束上的共线荧光和共振电离光谱测量值,其中束能是对不确定性的主要贡献,可以从这种方法中受益。该方法基于共线光谱法,除了波长仪表以外,不需要特殊设备,这通常可用。在NI梁上的原理实验中证明了它的出现。在准备能量测量时,已经鉴定出3 d 9 4 S 3 d 3→3 d 3→3 d 9 4 p 3 p 2的中性镍同位素中的转变为ν0(58 ni)= 850 343 678(58 ni)= 850 343 678(20)MHz and ni(60 ni(60 ni)= 850 ni)= 850 344 HHH = 850 344 HHH = 850 34 HHH = 850 34 HHH。
水质对于依赖海洋资源的海洋生态系统,人类福祉和经济体的健康至关重要。尤其是关于核污染的挑战,诸如Tritium of tritium的同位素是杰出威胁[19,21]。本文调查了水下机器人系统的新兴应用,并由物联网(IoT)技术的基础,在水产养殖中。重点是它们进行连续水质监测的潜力,在促进与研究人员的富裕数据相互作用的同时,采用可持续检测方法。近年来,人们见证了通常称为自动水下车辆(AUV)的水下机器人的激增[23,13],重新操作的车辆(ROVS)[1] [1],当在水面上,在水面,Au au自主的表面车辆(ASVS)(ASVS)[24] [24] [24] - 进行水质评估。配备了一系列传感器,这些不足的机器人具有监视各种环境(无论是海洋,河流还是湖泊)的水质指标的能力。
Oak Ridge国家实验室(ORNL)是DOE系统中最大的多图科学和能源实验室。其任务是提供科学发现和技术突破,以加速清洁能源和国家安全方面的解决方案,从而为国家创造经济机会。成立于1943年,作为曼哈顿项目的一部分,Ornl开创了pionepeed的pioneper posepene pote,然后侧重于核能,后来扩展到其他能源及其影响。今天,实验室管理着美国最全面的材料计划之一;世界上两个最强大的中子科学设施中的两个,散布中子来源和高通量同位素反应堆;融合和裂变能源和科学的独特资源;挽救生命同位素的生产设施;领导级计算机包括峰会,美国最快的计算机;以及一系列各种计划,紧急关注清洁能源,地球系统可持续性和国家安全。
拟议规则考虑了目前计划在近期部署的用于商业和研发目的的聚变机。2 “近期”一词不用于指代特定时间范围。工作人员考虑了制定本规则时工作人员所知的聚变科学和技术方法的某些特征和风险水平。3 拟议规则并非旨在解决与当今正在研究和开发的技术有显著不同的推测性聚变技术(例如,当今的设计类型包括托卡马克、仿星器、z 箍缩和场反转,燃料包括氘-氚、氘-氦-3 和质子-硼-11)。拟议规则使用了 ADVANCE 法案对“聚变机”的定义。聚变机器被定义为“一种能够:(1)通过聚变过程将原子核转化为不同的元素、同位素或其他粒子;(2)直接捕获和使用所得产物,包括粒子、热量或其他电磁
识别外星生命是太空研究中最令人兴奋和最具挑战性的努力之一。可以从生物元素,同位素和分子中推断出灭绝或现存生命的存在,但是需要准确和敏感的仪器来检测这些物种。在这张白皮书中,我们表明基于激光的质谱仪是原位鉴定原子,同位素和分子生物签名的有前途的仪器。给出了开发用于空间探索的激光射击/电离质谱(LIM)和激光解吸/电离质谱(LD-MS)仪器的概述。他们的用途是在火星场景和欧罗巴场景的背景下讨论的。我们表明,基于激光的质谱仪具有多功能和技术范围内的仪器,具有许多有益的特征可检测生命。fu-future行星着陆器和漫游者任务在其科学有效载荷中利用基于激光的质谱工具。
洛斯阿拉莫斯中子科学中心测量了 233 U 裂变的特性,入射中子能量从热能到 40 MeV。使用带有弗里希格栅的双电离室同时观察到碎片。使用基于质量和动量守恒的双能量分析法确定了释放的平均总动能和碎片质量产额。使用 232 Th 验证了实验方法,并使用 235 U 的热中子诱导裂变校准了绝对能量。这项工作结合了多机会裂变通道截面和裂变模型的新应用,以解释高能下瞬时中子发射引入的复杂性,并将结果扩展到比以前测量的更高的入射中子能量。必须对这些参数进行准确的实验测量,以更好地了解钍燃料循环中同位素的裂变过程。
布鲁克黑文国家实验室(BNL)拥有七个诺贝尔奖获得者的发现和超过70年的开创性研究,提供了发现科学和变革技术,以保护和确保国家的未来。实验室通过设计,建造和运营主要的科学用户设施来支持其DOE使命,从而领导并支持包括其他国家实验室,学术界和行业在内的各种研究团队。这些设施反映了对研究人员至关重要的国家研究基础设施的BNL/ DOE管理,例如对国家紧急情况的反应(例如,Covid-19-19)。能源与数据科学,核科学与粒子物理,加速器S&T,定量植物科学和量子信息科学是布鲁克黑文的当前计划。由Stony Brook大学(SBU)和Batelle Plus六所大学(哥伦比亚,康奈尔,哈佛大学,麻省理工学院,普林斯顿和耶鲁大学)之间建立合作伙伴关系,布鲁克黑文管理了计划,这些计划也有助于防止核武器的传播,保护未来的太空任务上的宇航员,并生产医疗及治疗疾病,以诊断和治疗疾病。
carlo.cazzaniga@mib.infn.it 关键词:闪烁体;伽马射线能谱;快中子;燃烧等离子体 摘要 在弗拉斯卡蒂中子发生器上测量了 3''x3'' LaBr 3 (Ce) 闪烁体对 14 MeV 中子辐照的响应,并通过专用的 MCNP 模型进行了模拟。发现有几种反应会影响测量的响应,其中中子非弹性散射和 79 Br、81 Br 和 139 La 同位素的 (n,2n) 反应起着关键作用。在实验阈值 0.35 MeV 以上,对 14 MeV 中子检测的总效率为 43%,并通过测量进行了确认。还观察到了晶体的辐射后活化,并根据 (n,2n) 反应中产生的短寿命 78 Br 和 80 Br 同位素的核衰变来解释。本文提出的结果与下一代燃烧等离子体聚变实验(如 ITER)中 γ 射线探测器的设计有关,这些实验需要在 14 MeV 强中子通量下进行测量。
众多代理重建提供了对晚期东亚季风后期变异性的一般见解。然而,挑战持续到精确评估对代理变化的绝对温度影响。在这里,我们使用两个独立的浅色热计基于细菌膜脂质和蜗牛壳的块状同位素,在西方中国西部黄土高原的同一部分中,建立了过去大约21,000年的稳健地面表面温度记录。我们的独立温度记录始终揭示(i)最后一个全新世和晚期冰川最大和(ii)逐渐冷却全新世之间的地表温度相似,这与气候模型预测形成了鲜明对比。我们提出,脱水层的土壤水分可用性变化会调节代理记录的土地表面温度。土地表面能量分配模型证实了这种机制,表明在将代理记录与气候模型输出进行比较时,应正确考虑土壤水分可用性的影响。