无分类器指导(CFG)已广泛用于文本到图像扩散模型中,其中引入了CFG量表以控制整个图像空间的文本指导强度。但是,我们认为全球CFG量表会导致空间不一致,这是不同的脱节优势和次优的图像质量。为了解决这个问题,我们提出了一种新颖的方法,即语义意识的无分类器指导(S-CFG),以自定义文本到图像扩散模型中不同语义单元的指导学位。具体来说,我们首先设计了一种训练 - 免费的语义分割方法,将潜在图像分配到每个Denoising步骤中相对独立的语义区域。尤其是,将U-NET主链中的跨意义图被重新归一化,以将每个贴片分配给相应的令牌,而自我注意力图则用于完成语义区域。然后,为了平衡各种语义单元的扩增,我们会自适应地调整各个不同区域的CFG尺度,以将文本指导学度重新确定为统一水平。最后,广泛的实验证明了S-CFG优于原始CFG策略在各种文本到图像扩散模型上的优越性,而无需任何额外的培训成本。我们的代码可在https://github.com/smilesdzgk/s-cfg上找到。
面部表达识别(FER)在计算机视觉应用中起着关键作用,包括视频不存在和人类计算机的相互作用。尽管FER的进展没有局部进步,但在处理在现实世界情景和数据集中遇到的低分辨率面部图像时,性能仍然会摇摆不定。一致性约束技术引起了人们的关注,以产生强大的卷积神经网络模型,从而通过增强来适应变化,但它们的功效在低分辨率FER的领域中得到了影响。这种性能下降可以归因于网络难以提取表达特征的增强样本。在本文中,我们确定了在考虑各种程度的分辨率时引起过度拟合问题的硬样品,并提出了新颖的硬样品感知一致性(HSAC)损失函数,其中包括组合注意力同意和标签分布学习。通过结合高分辨率和翻转低分辨率图像的激活图,将注意力图与适当的目标注意图与适当的目标注意图与适当的目标注意力图相结合的注意图与适当的目标注意力图的注意力图对齐。我们通过结合原始目标和高分辨率输入的预测来测量低分辨率面部图像的分类难度,并适应标签分布学习。我们的HSAC通过有效管理硬样品来赋予网络能够实现概括。各种FER数据集上的广泛实验证明了我们提出的方法比现有方法的多尺度低分辨率图像的优越性。此外,我们在原始RAF-DB数据集中达到了90.97%的最新性能。
本文件计划于 2022 年 3 月 9 日在《联邦公报》上公布,并可在线查阅:federalregister.gov/d/2022-04925 和 govinfo.gov
在本文中,我们研究了新哥本哈根(或“认识论实用主义”)对量子力学的主要解释之间的相似之处和差异,这些解释在这里被定义为拒绝量子态的本体论性质并同时避免隐藏变量,同时保持量子形式不变。我们认为,存在一个具有共同核心的单一通用解释框架,所有这些解释都致力于这个框架,因此它们可以被视为它的不同实例,其中一些差异主要是重点和程度的问题。然而,我们也发现了更实质性的剩余差异,并对它们进行了初步分析。我们还认为,这些剩余的差异无法在量子力学本身的形式主义中得到解决,并确定了可用于打破这种解释不确定性的更普遍的哲学考虑。
○确保在COP峰会中确保城市气候议程的连续性。○鼓励未来的COP主持人优先考虑其议程上的城市弹性和气候适应。●加强全球事件协同作用:认识到城市气候行动的动力,领导者强调了使未来的气候和城市化事件保持一致的重要性。值得注意的是,巴库将主持2026年世界城市论坛(WUF13)和世界环境日,为城市气候对话提供关键平台。● Recognition of existing partnerships and initiatives, such as the collaboration between the Slovak Ministry of Environment and UN-Habitat on the SURGe Initiative—formalized through a Letter of Intent signed earlier this month at the World Urban Forum (WUF12)—was highlighted as a key example of how national governments are advancing urban resilience through multilevel climate action.
对于某些可区分的函数h:r d→r和d二维向量的总数。这种特征的示例包括例如总均值,比率或相关系数。这也称为有限的人口推断问题(Beaumont和Haziza 2022)。我们进一步假设n很大,每个单个实验的计算成本也是不可行的。在这种情况下,研究经常诉诸于子采样。亚采样方法在过去几年中的人口急剧增加。例如,MA,Mahoney和Yu(2015); Ma等。(2022)引入了大数据回归的杠杆采样,随后启发了逻辑回归的类似发展(Wang,Zhu,Zhu和Ma 2018; Yao and Wang 2019)广义线性模型(AI等人。2021b; Yu等。2022)和分位回归(Ai等人2021a; Wang,Peng和Zhao 2021)。同样,Dai,Song和Wang(2022)开发了
双倍(DH)技术更常规地应用于玉米杂种繁殖中。但是,单倍诱导和识别的某些问题持续存在,需要解决以优化DH生产。我们的目标是使用taqman测定法实施QHIR1(MTL/ ZMPLA1/ NLD)和QHIR8(ZMDMP)的同时进行标记辅助选择(MAS),以在F 2代生成四个BHI306衍生的热带热带×温度诱导剂中。我们还旨在评估F 3代的单倍体诱导率(HIR)作为对MAS的表型反应。我们强调了每个诱导剂家族的HIR的显着增加。携带QHIR1和QHIR8的基因型比仅携带QHIR1的基因型表现出1-3倍的单倍体频率。此外,QHIR1标记还用于在种植后7天验证推定的单倍体幼苗。流式细胞仪分析是评估R1-NJ和QHIR1标记的准确性的黄金标准测试。QHIR1标记显示出很高的精度,并且可以在早期幼苗阶段通过R1-NJ标记在早期幼苗阶段进行多个单倍体识别。
沉积 (RPCVD) 系统以尽量减少表面损伤。起始表面是二氢化物和一氢化物终止的组合。ALE 实验周期包括用等离子体中的氦离子轰击基底 1-3 分钟以使其解吸,然后在无等离子体激发的情况下,在一定分压范围(1&- 7 Torr 至 1.67 mTorr)、温度范围(250 0 C-400 0 C)和时间范围(20 秒至 3 分钟)内用乙硅烷对表面进行剂量控制,以自限制方式将 Si2H6 吸附在轰击产生的裸露表面 Si 原子上,形成硅基 (SiH3) 物种,从而形成氢终止表面。在 3 分钟的轰击周期内,获得的最大生长量为每周期 0.44 个单层。随着轰击周期时间的减少,每周期的生长量减少,表明氢去除的百分比随着轰击时间的增加而减少。
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向