citrix daas允许您在混合部署中管理本地数据中心工作场所和公共云。您可以连接到公共云Microsoft Azure,Amazon Web Services(AWS)和Google Cloud,以及本地处理程序,例如Xenserver,Microsoft Hyper -V,Nutanix AHV和VMware vSphere。混合动力和摩尔汉方法具有在全球不同资源位置强加不同应用程序的灵活性。
尽管对情感的定义缺乏科学共识,但通常认为它们涉及思想,身体和行为的几种修改。尽管心理学理论强调了情绪的多元素特征,但对大脑中这种组成部分的性质和神经结构知之甚少。我们使用多元数据驱动的方法将广泛的情绪分解为功能性核心过程并确定其神经组织。20名参与者观看了40个情感剪辑,并以32个组件特征的特征定义了119个情感时刻。结果表明,在一组与估值评估,享乐体经历,新颖性,目标 - 相关,方法/避免倾向和社会关注相关的组件过程中编码组件过程的大脑网络中,有不同的情绪从协调的活动中出现。我们的研究超越了以前的研究,该研究通过强调新方法与理论驱动的建模如何为情感神经科学提供新的基础,并揭示人类情感经验的功能结构,从而超越了侧重于分类或维情感的研究。
从散装到单层guillaume cassabois laboratoire查尔斯·库仑(UMR5221)CNRS-montpellier University,F-34095 Montpellier,法国guillaume.cassabois.cassabois@umontpellier.fr Hexagonal Boron Nitride(Hexagonal Boron Nitride(Hbbn)依靠其低介电常数,高导热率和化学惰性。2004年,高质量晶体的生长表明,HBN也是深层硫酸群域中发光设备的有前途的材料,如加速电子激发[1]在215 nm处的激光证明[1],也证明了激光的表现[1],也证明了LASITIOL ELLICTER ELLICTIOL [1],也证明了LASITER IN-type-type-type-type-type-typepe inter-typepe intype intype-ultraviolet [1]。具有类似于石墨烯的蜂窝结构,大量HBN作为具有原子光滑表面的石墨烯的特殊底物获得了极大的关注,更普遍地是范德华异质结构的基本构建块[3]。我将在此处讨论我们的结果,以从批量到单层的HBN的光电特性。i将首先关注散装HBN,这是一个间接的带隙半导体,具有非凡的特性[4]。i将介绍我们最近的测量结果,揭示了散装HBN中巨大的光 - 物质相互作用[5]。然后,我将向单层HBN讲话。在通过高温MBE在石墨上生长的样品中,在与原子上薄的HBN发射的共鸣中发现了最小的反射率,从而证明了单层HBN的直接带隙[6]。最近通过从散装晶体中去除的单层HBN中的深度硫酸盐中的高光谱成像进一步证实了这些结果[7]。参考
最近在二维材料中发现的量子发射器为量子信息集成光子器件开辟了新的前景。这些应用中的大多数都要求发射的光子是不可区分的,而这在二维材料中仍然难以实现。在这里,我们研究了利用电子束在六方氮化硼中产生的量子发射器的双光子干涉。我们在非共振激发下测量了 Hong-Ou-Mandel 干涉仪中零声子线光子的相关性。我们发现发射的光子在 3 纳秒的时间窗口内表现出 0.44 ± 0.11 的部分不可区分性,这对应于考虑不完美发射器纯度后的校正值 0.56 ± 0.11。 Hong-Ou-Mandel 可见度与后选择时间窗口宽度的相关性使我们能够估计发射器的失相时间约为 1.5 纳秒,约为自发辐射设定的极限的一半。使用 Purcell 效应和当前的 2D 材料光子学,可见度可达到 90% 以上。
摘要:我们使用环境异常校正的电子显微镜在一系列氧气压力的氧化气环境中,在氧化气环境中能量电子在氧化气环境中的影响下,在氧化气环境中能量电子在氧化气环境中的损伤阈值和途径上提出了前所未有的结果。我们观察到损伤的级联反应,该过程抵抗损害,直到与碳纳米管相比,较高的电子剂量,启动了无缺陷的BNNT侧壁,并通过从结晶纳米管转换为从结晶纳米管转换为无定形的硼氮化物(bn),均可抵抗氧化。我们将碳纳米管氧化的先前结果进行比较,并提出了将两种情况下损害发作的模型归因于物理氧气层,从而降低了损害发作的阈值。出乎意料的是,升高的温度可提供防止损害的保护,电子剂量率显着超过了氧剂量率,而我们的模型将两种影响都归因于物理氧气人群。
1 Laboratory of Study of Microstructures, Onera-CNRS, University Paris-Saclay, BP 72, 92322 CHECTILLON CEDEX, France 2 University Paris-Saclay, UVSQ, CNRS, GEMAC, 78000, Versailles, France 3 Tim Taylor Department of Chemical Engineering, Kansas State University Manhattan, KS 66506, USA 4 Laboratory of Multimate and Interfaces, UMR CNRS 5615, Univ Lyon University Claude Bernard Lyon 1, F-69622 Villeurbanne, France 5 Laboratory Mateis, UMR CNRS 5510, Univ Lyon, INSA Lyon, F-69621 Villeurbanne, France 6 Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044,日本7电子和光学材料研究中心,国家材料科学研究所,1-1 Namiki,Tsukuba,Tsukuba 305-0044,日本(日期:
由于全球对现代技术的便携式电源需求的增长,含LI的电池(LB)作为常规能源的新型替代方案正在迅速增加。将LB的大规模整合到每日电子设备中,从手机[1]到电动汽车,[2]可以大大减少温室气体的排放,减少有毒重金属的使用,并进一步使绿色技术能够保留环境。 尤其是引入便携式锂离子电池已经彻底改变了绿色能源的储存(例如,从太阳能或风能转换)并减少了整体能源消耗。 [3,4]然而,一方面,提高了锂离子电池的能源存储能力,能源密度和效率,并解决了环境可持续性和制造成本的问题,另一方面,必须确定新的新替代材料和设计。 在过去的二十年中,源自分层结构(例如石墨)的纳米材料的出现导致它们大量融合到能源行业的各个部门,尤其是LB生产。 [5 - 8]不同的基于碳的纳米形态,例如碳纳米管(CNT),石墨烯和石墨烯量子点(GQDS),已广泛用于改善锂离子电池的性能。 石墨烯的出色电特性(10 000 cm 2 V 1 S 1)[9-11] [9-11]在改善电极电导率[12]以及电解质的离子电导率方面引起了极大的兴趣。将LB的大规模整合到每日电子设备中,从手机[1]到电动汽车,[2]可以大大减少温室气体的排放,减少有毒重金属的使用,并进一步使绿色技术能够保留环境。尤其是引入便携式锂离子电池已经彻底改变了绿色能源的储存(例如,从太阳能或风能转换)并减少了整体能源消耗。[3,4]然而,一方面,提高了锂离子电池的能源存储能力,能源密度和效率,并解决了环境可持续性和制造成本的问题,另一方面,必须确定新的新替代材料和设计。在过去的二十年中,源自分层结构(例如石墨)的纳米材料的出现导致它们大量融合到能源行业的各个部门,尤其是LB生产。[5 - 8]不同的基于碳的纳米形态,例如碳纳米管(CNT),石墨烯和石墨烯量子点(GQDS),已广泛用于改善锂离子电池的性能。石墨烯的出色电特性(10 000 cm 2 V 1 S 1)[9-11] [9-11]在改善电极电导率[12]以及电解质的离子电导率方面引起了极大的兴趣。[13]受这些基于碳的纳米材料,其他分层材料的纳米结构的启发,例如过渡金属二核苷(TMDS),[14]磷,[15]过渡金属碳(TMCS:TMC:e,例如,MXENES),[16],[16],[16]和NITRIDE(BORON NITRIDE(BN)[17] [17] [17] [17] [17]尤其是,由于与上述材料家族相比,由于其出色的热化学稳定性,高质子和离子汇率,高质子和离子汇率,高质子和离子汇率的可调性以及电子性能的可调性,BN在能源储能研究中的适用性已经快速增长。[18,19]在下一部分中,讨论了LB中BN纳米材料的重要性,并具有强调BN作为LB技术的未来候选部分的属性。同时,作者旨在检查H-BN的局限
摘要 — 从硅上外延生长的氮化镓 (GaN) 开始,设计、制造并表征了集成压电换能器的预应力微谐振器。在夹紧梁中,众所周知,拉伸应力可用于增加谐振频率。在这里,我们计算了预应力梁中平面外弯曲模式的模态函数,并推导出一个模型来预测谐振频率和压电驱动因子。我们表明,理论和实验结果之间可以获得良好的一致性,并推导出机电转换的最佳设计。最后,我们的模型预测了由于拉伸应力导致的品质因数增加,这已通过真空下的实验测量得到证实。这项研究展示了如何利用外延工艺产生的材料质量和初始应力。
高效、精准的基因编辑是任何反向遗传学研究的黄金标准。最近开发的 Prime Editing 方法,即改进的 CRISPR/Cas9 [成簇的规律间隔的回文重复序列 (CRISPR)/CRISPR 相关蛋白] 编辑方法,已经达到了精度目标,但其编辑率还有待提高。我们提出了一种改进的方法,可在模型植物 Physcomitrium patens 中进行常规 Prime Editing,同时探索潜在的新 Prime Editing 改进。使用标准化的原生质体转染程序,通过直接植物选择评估了针对 APT 报告基因的多种 Prime Editing 向导 RNA (pegRNA) 结构和 Prime Editor 变体。综合起来,Prime Editor 表达的增强、pegRNA 3ʹ 延伸的修改以及在 pegRNA 的逆转录酶模板序列中添加同义突变,可显著提高编辑率,而不会影响编辑质量。此外,我们表明,prime editing 可以通过间接选择来编辑目标基因,正如 Ppdek10 突变体的产生所证明的那样。此外,我们确定植物逆转录转座子逆转录酶能够实现 prime editing。最后,我们首次展示了使用两个独立编码的肽进行 prime editing 的可能性。
2021年12月 - 2024年11月,英国爱丁堡大学爱丁堡大学研究助理。有助于创建爱丁堡权力下放指数。研究了区块链权力下放的状态,缓解远程攻击以及持有证明分类帐的可审核性。2017年11月 - 2021年8月,研究员,iohk,遥控器。进行了对列出的区块链的结算层的研究,包括Cardano中的股份委托设计,以及针对分布式分类帐的51%攻击的缓解技术。