我们研究由非热相差的超导体形成的非热约瑟夫森连接,这在非热性下是有限的,这自然是由于与正常储层的耦合所致。取决于非热性的结构,以智障的自我能量捕获,低能频谱寄主在拓扑上稳定的异常点,即在零或有限的真实能量作为超导相位差的函数。有趣的是,相应的相位偏置的超级流可以在此类特殊点上获取发散的纤维。此实例是一种自然而独特的非热效应,它标志着一种可能增强约瑟夫森连接的敏感性的可能方法。我们的作品为实现独特的非温和现象而开辟了一种方法,这是由于非热门拓扑与约瑟夫森效应之间的相互作用所致。
AC Josephson效应吸引了很多关注,作为研究基本物理现象的强大探测。1–7常规的基于氧化物的约瑟夫森连接(JJS)具有正弦电流相关联(CPR)。结果,微波辐照下的这些连接的AC响应表现为vn¼n(U 0 f mw)处的相锁电压平台,其中n是整数,u 0是the the the the the the the the the the the the fl ux量子。然而,许多理论研究预测超导体 - 疾病 - 导向器 - 超导体(S-SM – S)系统中的非鼻腔CPR,在这些系统中,高度透明模式通过Andreev结合状态携带电流。8–11这种现象的实验表现示例包括拓扑系统中缺少奇数步骤1,2,4,6和高度偏斜的琐碎琐碎系统中的分数shapiro步骤。1,12–14因此,研究AC Josephson效应可以提供对S -SM – S系统物理学的关键见解。由于其狄拉克带结构和出色的载体传输性能,石墨烯是实现S -SM – S Josephson插条设备的吸引人选择。的确,许多研究有助于推进石墨烯JJ设备。3,5,15–20在其中的观测值是AC JOSEPHSON在石墨烯JJ中的效应。它们包括零跨步骤,19个双稳定性,20和分数电压在多末端系统中。3,5但是,尚未在平面石墨烯JJS中系统地研究了分数shapiro的步骤及其门电压依赖性,我们在这里的研究中报告了这一点。
表面和界面的电子结构对量子器件的特性起着关键作用。在这里,我们结合密度泛函理论与混合泛函以及最先进的准粒子引力波 (QSGW) 计算,研究了实际的 Al / InAs / Al 异质结的电子结构。我们发现 QSGW 计算和混合泛函计算之间具有良好的一致性,而后者本身与角分辨光电子能谱实验相比也非常出色。我们的论文证实,需要对界面质量进行良好的控制,才能获得 InAs / Al 异质结所需的特性。对自旋轨道耦合对电子态自旋分裂的影响的详细分析表明,k 空间中存在线性缩放,这与某些界面态的二维性质有关。QSGW 和混合泛函计算的良好一致性为可靠地使用 QSGW 的有效近似来研究非常大的异质结打开了大门。
1 MOE的关键实验室,用于凝结物质的非平衡合成和调节,Shaanxi省级高级材料和介质物理学的主要实验室,XI'AN JIAOTONG大学,XI'AN,XI'AN,710049,710049,中国2个国家主要的实验室,是纳尼型纳米型材料和量化量的纳米级材料和量子量的国家主要实验室, 200433,中国3个州制造系统工程钥匙实验室,西安·贾东大学,西安,710049,中国4号材料材料纳米结构研究中心,国家材料科学研究所,1-1-1-1-1-1-1-1-1-1-1-1-15-0044,日本305-0044,日本5日本6东南大学物理学院量子材料和设备的主要实验室,211189,中国南京7 Zhangjiang Fudan International Innovation Center,Fudan University,上海2011年
超导二极管效应(SDE)是一种磁电现象,其中外部磁场将非零的质量中心动量赋予库珀对,以促进或阻碍根据其方向促进超级电流的流动。我们提出,基于量子的自旋霍尔绝缘子(QSHI)的约瑟夫森连接器可以用作非隔离电子设备的多功能平台,当通过相位偏置和非平面磁场触发时,该平台表现出SDE。通过计算Andreev结合状态和准颗粒状态的连续体的贡献,我们提供了数值和分析结果,审查了SDE的各个方面,包括其质量Q因子。发现Q因子的最大值在低(零)温度下是通用的,它的起源与独立于交界处的特定细节的潜在拓扑特性相关。随着磁场的增加,由于轨道效应引起的诱导超导间隙的关闭,SDE减小了。要观察SDE,必须设计基于QSHI的Josephson结,以使其边缘具有不务件的运输。此外,我们在一个更具异国情调但现实的场景中探索了SDE,在驱动电流时,约瑟夫森交界处的典型地面态奇偶校仍然保守。在这种4π的周期情况下,我们预测SDE的增强是与其2π-周期性的,平等无限的对应物相比的增强。
有机无机杂交光催化剂用于水分割的利用引起了显着的关注,因为它们能够结合两种材料的优势并产生协同效应。但是,由于对这两个组成部分之间的相互作用以及其准备过程的复杂性的相互作用有限,它们仍然远非实际应用。在此,通过将糖化的共轭聚合物与TIO 2-x介孔球相结合,以制备高效率杂种杂种光催化剂。与亲水性寡醇(乙二醇)侧链的共轭聚合物的功能不仅可以促进结合聚合物在水中的分散体,而且还可以促进与TIO 2 -X形成稳定的异质结纳米颗粒的相互作用。在35.7 mmol H-1 g-1的365 nm时,在PT共同催化剂存在下,氢的量子产率为53.3%,氢的演化速率为35.7 mmol H-1 g-1。基于飞秒瞬态吸收光谱和原位分析的高级光物理研究,XPS分析揭示了II型异质结接口处的电荷转移机制。这项工作表明了糖化聚合物在构建用于光催化氢生产的杂交异质结中的前景,并深入了解了这种异质结光催化剂的高光催化性能。
我们从理论上研究了三端约瑟夫森连接中的超导二极管效应。超导系统中的二极管效应通常与在相反方向流动的电流的临界电流存在差异有关。我们表明,在多末端系统中,这种效果自然发生,而无需任何自旋相互作用,这是由于携带超恒星的Andreev结合状态之间存在相对移位的结果。在一个三末端交界处的示例中,我们证明了一个超导接触中的非重点电流可以通过对其他触点的适当相位偏置来诱导,前提是系统中至少有两个Andreev绑定状态,并且系统的对称性被打破。在描述短期和长时间连接的数值模型中证实了此结果。通过优化连接点的几何形状,我们表明已实现的超导二极管的效率超过35%。我们将预测与对多末端连接的最新实验相关联,在该实验中,观察到非相互超电流。
开发大规模超导量子处理器的方法必须应对固态设备中普遍存在的大量微观自由度。最先进的超导量子比特采用氧化铝 (AlO x ) 隧道约瑟夫森结作为执行量子操作所需的非线性源。对这些结的分析通常假设一种理想化的纯正弦电流相位关系。然而,这种关系预计仅在 AlO x 屏障中透明度极低的通道极限下成立。在这里,我们表明标准电流相位关系无法准确描述不同样品和实验室中 transmon 人造原子的能谱。相反,通过非均匀 AlO x 屏障的介观隧穿模型预测了更高约瑟夫森谐波的百分比级贡献。通过将这些包括在 transmon 哈密顿量中,我们获得了计算和测量能谱之间数量级更好的一致性。约瑟夫森谐波的存在和影响对于开发基于 AlO x 的量子技术(包括量子计算机和参数放大器)具有重要意义。例如,我们表明,经过设计的约瑟夫森谐波可以将传输量子比特中的电荷分散和相关误差降低一个数量级,同时保持其非谐性。
Martina Trahs,Larissa Melikek,Jacob F. Steinen Tammena,Nils Bogs,Nils Bagram Gamed,Kixtix Vend,Casharina Frank
因此,可以通过执行各个量子数交换的所有可能组合来获得允许的对振幅(eqs。(S2)和(S3)),填充反对称条件等式。(S1)。这样做,我们发现八个允许尊重反对称条件的对对称类别,其中4对应于奇数相关性,请参见表S1。特定相关性是超导索引(sup。索引)在扩大允许的对对称性方面起着至关重要的作用。表S1在主文本的“ jjs中的us频间振幅”部分中显示为表1。在没有任何自旋粘合字段的情况下,出现对的相关性的自旋对称性与母体超导体的自旋对称性相同。因此,在我们的研究中允许的对对称类别(不存在旋转式粘合字段)是ESEE和OSOE对对称类别:它们对应于超导体指数中的偶数(奇数频率)旋转(奇数)均匀(奇数)旋转单元(奇数),甚至对应于超导器指数。通过包括一个自旋混合字段,可以获得表S1中对应于OTEE和OTOO对对称类别的奇数自旋 - 三个三角对振幅,可以用作超导阶段高度可控制的旋转源,从而可以使超导性旋转旋转的超导量。由于我们在主文本中提出的结果中没有自旋混合字段,因此其中的对对称性表现出父母超导体的自旋对称性,即自旋单旋。这是在主文本的“ JJS中的persupconductor对振幅”部分中特别讨论的。