1.引言小型水下航行器使用的电池系统大多为电化学电池或充电电池等化学能源,工作时间只有几十小时到几天。然而,近年来,长期海底侦察等新任务对海底动力系统提出了更高的要求。核电源具有一体化结构紧凑、功率大、工作时间长、可靠性高等特点,可以满足这些需求。尤其是热管冷却反应堆,具有衰变热辐射低、固有反应性控制、无需额外增压系统等优点。综合考虑反应堆尺寸、安全性和运行可靠性,热管反应堆电池系统具有噪声低、压强梯度小、运动部件少等特点,适合用于水下航行器能源系统。
总发电量(发电机端)(KWE) 蒸汽轮机 785,587 794,691 785,071 723,700 715,557 耗能空气膨胀机 - 217,964 215,454 80,118 80,714 总发电量(KWE) 785,587 1,012,655 1,000,524 803,818 796,271 总辅助设备(KWE) 235,587 462,655 450,524 253,818 246,271 净功率(KWE) 550,000 550,000 550,000 550,000 550,000 净电厂效率 (% HHV) 31.24 30.55 30.76 32.61 33.00 热输入煤 (KWT HHV) 1,760,447 1,800,104 1,705,240 1,686,511 1,569,989 天然气 (KWT HHV) - - 82,751 - 96,584 总计 (KWT HHV) 1,760,447 1,800,104 1,787,991 1,686,511 1,666,573 碳捕集率 (%) 99.5 99.5 96.8 99.5 99.5
摘要。我们讨论了核电推进 (NEP) 能力,该能力将 (1) 使一类无法使用放射性同位素动力系统完成的外太阳系任务成为可能,并且 (2) 显著增强一系列其他深空任务概念。NASA 计划开发 Kilopower 技术用于月球表面发电。Kilopower 还可以作为 10 kWe NEP 系统的电源;因此,我们强调 10 kWe NEP 的优势,以鼓励 NASA 科学任务理事会 (SMD) 倡导(作为潜在受益者)NASA 开发 Kilopower 的计划,并激励进一步开展 10 kWe NEP 相关概念研究。背景和主张。2010 年,十年巨行星调查小组要求进行一项研究,以考虑使用小型裂变动力系统支持未来未指定的 NASA 科学任务的可能性。美国能源部 (DOE) 和 NASA 的研究小组(包括格伦研究中心 (GRC)、喷气推进实验室 (JPL)、洛斯阿拉莫斯国家实验室 (LANL) 和爱达荷国家实验室 (INL))选择了一个简单的概念,提供 10 kWe 的功率、15 年的使用寿命,并可能在 2020 年具备发射能力 [Mason et al., 2010, 2011]。该初始概念导致了该概念的开发和测试计划,从 2012 年的平顶裂变演示 (DUFF) 测试开始 [Poston and McClure, 2013]。2015 年,NASA 的空间技术任务理事会 (STMD) 与美国能源部国家核安全局 (NNSA) 合作,进一步开发 Kilopower,作为一种新型、简单的 1 至 10 kWe 空间反应堆概念 [Gibson et al., 2017]。与电力推进一起使用的 10 kWe 电源可以实现一类外太阳系任务,并显著增强一系列其他深空任务概念 1 。该能力可以增加科学有效载荷质量、减少飞行时间、延长任务寿命 2 ,并为科学仪器提供充足的电力和/或提高数据速率。这样的进步将为卡西尼级任务提供科学价值的突破 [美国国家研究委员会,2006],使 NASA 能够继续执行大型外太阳系战略任务 [美国国家科学、工程和医学院,2017]。基于 10 kWe NEP 系统可以实现放射性同位素动力系统无法实现的任务的假设 3,4 ,NASA 和 DOE 研究中心的联合研究小组确定了使用 10 kWe NEP 进行外太阳系探索的一般和具体好处。裂变动力系统的使用已被确定为实现可持续发展的关键因素
裂变发电是一项很有前途的技术,它已被提议用于未来的几种太空用途。它正在考虑用于旨在探索太阳系甚至更远地方的大功率任务。当 NASA 的 1 kWe 千瓦斯特林技术反应堆 (KRUSTY) 原型于 2018 年完成全功率核试验时,空间裂变发电取得了巨大进展。它的成功激发了主要太空国家之间新一轮的研究竞争。本文回顾了 Kilopower 反应堆和 KRUSTY 系统设计的发展。它总结了目前正在考虑将裂变反应堆作为动力和/或推进源的任务。这些项目包括访问木星和土星系统、凯龙星和柯伊伯带天体;海王星探索任务;以及月球和火星表面基地任务。这些研究表明,对于功率水平达到~1 kWe的任务,裂变电推进(FEP)/裂变动力系统(FPS)在成本方面优于放射性同位素电推进(REP)/放射性同位素动力系统(RPS),而当功率水平达到~8 kWe时,它具有质量更轻的优势。对于飞行距离超过~土星的任务,含钚的REP可能在成本上无法接受,因此FEP是唯一的选择。地面任务更喜欢使用FPS,因为它满足10's kWe的功率水平,并且FPS大大拓宽了可能的着陆点的选择范围。按照目前的情况,我们期待在未来1-2年内实现旗舰级的裂变动力太空探索任务。
研究要求•功率水平:最终用户10 kWe(EOL)•发布日期:2027•操作:1年(基于15年的设计寿命,冗余,质量要求:3500千克•环境:月球和火星•屏蔽和辐射保护:
BACHELOLOR OF MEDICEELOR OF MEDICEELOR OF BACHELOLOR OF SURGERY (MAM) ~ NAME CTRY CTRY DISTRICT 1 MUGISA Pau l Edwin l Edwin 2 MUGISA l Edwin 2 MUGAMPA 2 MUMANB OF 2 MUMMB ERE 3 3 MASCS 3 MAS 3 MAS 3 MAS 3 MAIS I KAID 4 CHAING MY RAID 4 KOID 3 NJA 5 KSAMBA nakhiraht f bu
代表现在和以前的客户包括:戴尔; docomo;哈密瓜系统; KWE国际和统一的颜色技术; Allvia(TRU-SI技术); MMC网络和AMCC(应用微型电路公司); Mosel Vitelic和Promos Technologies;三星;太阳微型系统; SwitchSoft系统; Netdynamics;富士通软件公司; Alantec Corporation; phone.com; AMD(高级微设备)。
免责声明:此公告的主题仅出于信息目的。所有数据都是从内部和外部来源获得的,这些内部和外部来源在发布时被认为是真实而准确的。从此类数据中得出的前瞻性陈述不应作为保证未来绩效的保证,也不应依赖于事实。kwe对本文包含的任何不正确信息概不负责或负责,除非适用安全法要求,否则没有义务更新前瞻性陈述。
• #1 CCHP 装置 - 600 kWe/700 kWth(加热)/400 kWth(冷却),电效率为 42%,热效率为 48.4%,总效率为 90.4%; • #2 吸附式制冷机(基于水-溴化锂),制冷功率分别为 150 和 250 kWth,性能系数 (COP) 均为 0.75; • 电制冷机 - 900 kWth; • #1 光伏 (PV) 系统,20 kWp,太阳能模块的平均效率为 19%; • #1 集成氢系统,由 #1 23 kW 碱性电解器、#2 标准条件下容量为 6000 l 的金属氢化物储氢罐和 #1 1 kW 的质子交换膜 (PEM) 燃料电池组成——在 eNeuron 期间安装; • #2 锂离子二次电池,容量为 5 kWh,每个电池通过 3 kW 逆变器连接到最大 2.4 kW 的电负载和电网——在 eNeuron 期间安装; • #2 电动汽车充电站,功率为 7 kW(单相)/22 kW(三相),供电电压为 230 V(单相)/400 V(三相),电网频率为 50 Hz——在 eNeuron 期间安装。