1。简介(PDRN)由精子细胞Deonorhynchus mykiss(鲑鱼鳟鱼)Oronchorhynchus keta(鲑鱼朋友)的DNA片段衍生物组成。6 PDRN化学结构由低分子量DNA组成,范围为50至1,500 kDa。它由脱氧纤维核苷酸的线性聚合物与磷酸二酯键,其中单体单位由嘌呤和嘧啶核苷酸代表。这些聚合物链创建了双螺旋桨形的空间结构。提取和纯化过程允许恢复超过95%的纯物质。这对于确保绝对缺乏免疫反应很重要。精子是高度纯化DNA提取的最合适的来源,而没有杂质的风险,例如肽,蛋白质和脂质。6在临床实践中引入PDRN并不是什么新鲜事物,其惊人的治疗作用包括抗炎,抗凋亡,抗骨质疏松性,抗骨质,抗质发生,抗肾上腺素,抗替代性,抗稳态,抗稳态,骨再生剂,组织,组织,抗囊性损伤。,伤口的愈合和疤痕的预防作用(图1)。7–16
图 1 – DCFHP 设计和验证。(A) DCFHP 示意图以红色显示了将 S∆C-Fer 转化为 DCFHP 所做的修改。受体结合域 (RBD)、N 端域 (NTD)、S1/S2 切割位点、S2' 切割位点、融合肽 (FP)、七肽重复 1 (HR1),如注释所示。(B) SDS-PAGE 凝胶显示纯化的 DCFHP 以单体形式运行,分子量达到预期的 kDa(梯形图,左侧显示)。(C) 从 SEC-MALS 确定的 UV(黄色)和光散射(灰色)轨迹显示了均匀的纳米颗粒峰,其近似分子量(虚线)为 3.4MDa。(D) DCFHP 的 3D 重建低温电子显微镜密度图,采用八面体对称性细化。 (E) 用 S∆C-Fer 或 DCHFP(由 500 µg 明矾和 20 µg CpG 1826 配制)免疫小鼠后,第 21 天血清对武汉-1 SARS-CoV-2 假病毒具有类似的强效中和作用,单次免疫后即可达到。在表达 ACE2 和 TMPRSS2 的 HeLa 细胞系中评估中和滴度。10 只小鼠的数据以几何平均滴度和标准差表示。测定定量限 (LOQ) 显示为虚线水平线。
人工智能 (AI) 方法在药物发现和递送系统的设计和优化中得到了广泛考虑。在此,机器学习方法用于优化载姜黄素 (CUR) 纳米纤维的生产。通过文献调查挖掘所需数据,并检测和研究两类(包括基于材料和机器的参数)作为最终结果的有效参数。AI 结果表明,高密度聚合物具有较低的 CUR 释放率;然而,随着聚合物密度的增加,许多类型聚合物中的 CUR 包封效率 (EE) 都会增加。当分子量在 100 至 150 kDa 之间、CUR 浓度为 10 – 15 wt% 时,可获得最小直径、最高 EE 和最高药物释放百分比,聚合物密度在 1.2 – 1.5 g mL 1 范围内。此外,最佳距离为 23 cm、流速为 3.5 – 4.5 mL h 1 、电压在 12.5 – 15 kV 范围内可获得最高的释放率、最高的 EE 和最低的纤维平均直径。这些发现为未来通过 AI 方法设计和生产具有理想特性和性能的载药聚合物纳米纤维开辟了新道路。
摘要:骆驼源单链抗体(sdAb),又称VHH或纳米抗体,是一种独特的功能性重链抗体(HCAb)。与传统抗体相比,sdAb是一种独特的抗体片段,由重链可变结构域组成。它缺少轻链和第一个恒定结构域(CH1)。sdAb的分子量很小,仅为12~15 kDa,与传统抗体具有相似的抗原结合亲和力,但溶解度更高,在识别和结合功能性、多功能、靶向特异性的抗原片段方面具有独特优势。近几十年来,纳米抗体以其独特的结构和功能特点,被认为是传统单克隆抗体的有前途的药物和替代品。作为新一代纳米生物工具,天然和合成纳米抗体已应用于生物医学的许多领域,包括生物分子材料、生物研究、医学诊断和免疫治疗。本文简要概述了纳米抗体的生物分子结构、生化特性、免疫获取途径及噬菌体库构建等,并全面评述了其在医学研究中的应用,以期为进一步探索和揭示纳米抗体的特性和功能提供参考,并为基于纳米抗体的药物和治疗方法的开发提供良好的前景。
干扰素(IFN)刺激的基因15(ISG15)是由两个泛素样(UBL)结构域组成的15 kDa蛋白。一个铰链序列将N末端UBL结构域连接到C末端UBL结构域,该结构域具有含有赖氨酸,精氨酸和甘氨酸残基(LRLRRGG)的基序[1-4]。通过此序列,ISG15通过E1-激活酶(UBE1L)的顺序作用,E2偶联酶[泛素蛋白 - 偶联酶E2 L6(UBCH8)和E3 liig and rldl rldl rldl rldl and hh3 lig hh 3 ligh酶(ube1l)和rldl rld hhst iSG15与赖氨酸(LYS)残基上的靶蛋白共价相关。泛素蛋白连接酶5(HERC5),Ariadne RBR E3泛素蛋白连接酶1(Hhari)和包含25个(TRIM25)的三方基序[5-8]。此过程称为IsgyLation,以三个步骤发生,类似于蛋白质泛素化过程:(a)UBE1L介导了三磷酸腺苷(ATP)依赖性硫酯与ISG15的形成; (b)ISG15通过式式反应从UBE1L转移到UBCH8,形成ISG15和UBCH8之间的硫酯键; (c)从ISG15-E2酶复合物中,E3连接酶促进了ISG15向靶蛋白的LYS残基的转移和共价附着。因此,e3 ligases herc5,hhari和trim25介导底物的特异性[5-8]。蛋白质Isgylation受调节
这项工作强调了使用生物质木质素将温室气体CO 2链接起来的转换方法,以开发新的可持续可回收聚合物,以大量和非食品为基础的可再生资源。在大气压力和室温下,使用成本效率,非恒温和更绿色的方法合成了一个环状碳酸盐单体。完全可以通过改变催化剂(DBU和TBD),催化剂加载(0.5-5.0%)和反应时间(2-40分钟)来实现完全可编程的开环聚合化。最好的聚合物是在1%TBD中获得30分钟反应的1%TBD。使用光谱分析(包括1小时,13 C和2D HSQC NMR,FT-IR和GPC)建立了合成环境单体和聚合物结构的精确表征。新的聚合物表现出高分子量(M N:120.34–154.58 kDa)和足够的热稳定性(T D5%:244–277°C,来自TGA和T G:33-52°C的DSC),从DSC中)对实用应用提供了优势。显着地,在DBU存在下,CO 2和木质素的聚合物成功地通过在90°C的90°C加热12小时,成功地回收到单体,从而获得圆形塑料经济体。此过程可为另一种聚合而产生原始的单体,而无需进行化学结构的不必要变化,从而提出了最终的可持续解决方案。
tau是一种微管稳定的蛋白质,主要在中枢神经系统(CNS)神经元中表达,但在星形胶质细胞和少突胶质细胞中也低水平。tau由人脑中的六种同工型组成,分子量范围为48-67 kDa。在生理条件下,tau主要位于神经元内。然而,脑脊液(CSF)中的Tau升高是神经退行性疾病和严重脑损伤的标志,表明其在神经元损伤过程中的细胞外释放。在阿尔茨海默氏病(AD)和相关疾病中,tau变得异常磷酸化,形成丝状束。在其磷酸化位点,苏氨酸181(p-tau 181)的tau异常磷酸化导致神经原纤维缠结的形成,这是AD的标志性病理特征。CSF中P-TAU 181水平升高,血液与AD患者的认知下降和神经退行性始终相关,使P-TAU 181成为有价值的诊断和预后标记。CSF中P-TAU 181水平升高,血液与AD患者的认知下降和神经退行性始终相关,使P-TAU 181成为有价值的诊断和预后标记。
Bicycles® 是一种新型治疗剂:通过化学支架约束的双环肽,具有结构稳定性,因此具有与抗体相当的高亲和力和选择性。Bicycles 体积小(1.5-3 kDa),可快速渗透和渗出组织。Bicycles 是完全合成的,可通过简单结合形成双环毒素结合物,从而实现细胞毒性有效载荷的靶向递送。Ephrin 受体 A2 (EphA2) 是 Ephrin 受体家族细胞间连接蛋白的成员,在多种实体瘤中高度过表达,与预后不良有关。尽管该靶点具有价值,但针对 EphA2 (MEDI-547) 的抗体药物结合物的临床开发在出现严重不良事件(包括出血和肝毒性)后停止(Annunziata 等人,2013 年)。使用专有噬菌体展示肽技术鉴定了 EphA2 的自行车结合物,该技术由高度多样化的自行车噬菌体库组成,与可裂解的连接体和毒素结合形成自行车毒素结合物 (BTC)。BTC 体积小,与其他靶向细胞毒性方法(如抗体-药物结合物)相比具有显著优势,因为它具有快速渗出、更好的肿瘤渗透性和肾脏消除性。我们根据体内功效、耐受性和类药物特性,从 75 多个 BTC 中选出了候选 BTC BT5528。
尾脑神经元的适当发展和功能对于维持皮质回路中的激发和抑制(E/I)平衡至关重要。谷氨酸通过N-甲基-D-天冬氨酸受体(NMDARS)有助于皮质间神经元(CIN)发育。nMDAR激活需要甘氨酸或D-丝氨酸的共同激动剂的结合。d-serine(许多成熟前脑突触的共同激动剂)被L丝氨酸的神经酶丝氨酸种族酶(SR)进行了激烈。我们利用本构SR基因敲除(SR - / - )小鼠研究了D-丝氨酸的可用性对前比率皮层(PRL)中CIN和抑制突触发展的影响。我们发现最未成熟的LHX6 + CIN表示SR和强制性的NMDAR亚基NR1。在胚胎第15天,Sr - / - 小鼠在神经节象征中积累了GABA和有丝分裂增殖的增加,而E18 Neofortex中的GAD1 +(谷氨酸脱羧酶67 kDa; gad67)细胞的较少(谷氨酸脱羧酶67 kD67)。LHX6+细胞成长为白蛋白(PV+)和生长抑素(SST+)CINS。在产后日(PND)16 sr - / - 小鼠的PRL中,GAD67+和PV+的GAD67+和PV+显着下降,但SST+ CIN密度却没有显着降低,这与降低的2/3跨膜神经元的抑制性突触后潜能降低有关。这些结果表明,D丝氨酸的可用性对于产前CIN发育和产后皮质回路的成熟至关重要。
阿尔茨海默氏病(AD)是痴呆症最常见的形式,全球超过3500万人受到影响。它被认为是一种慢性疾病,也是对世界健康问题的高度疾病。作为主要危险因素是年龄,并且不同的研究预测人口预期寿命的增加,预计接下来的几年AD患者人数会升级(阿尔茨海默氏症的协会报告,2022年)。在这种痴呆症中,海马中的胆碱能神经元逐渐导致不同的症状,例如:认知障碍,学习障碍和依赖性(Lane等,2018)。已经描述了分子水平的多种病理事件,是这些神经元降解的最普遍的假设是由热磷酸化的蛋白质tau和细胞外plaques组成的细胞内神经缠结的积累。尽管这些病理事件已知数十年,但它们使用不同方法的直接调节尚未提供有效的治疗方法,能够阻止疾病的进展。在可用的药物中减轻了AD症状,我们可以不同,我们可以不同,我们可以不同地抑制乙酰胆碱酯酶的抑制剂(舒适,多奈哌齐,甘坦胺和Rivastigmine)和n-甲基 - d-甲基 - d-天冬氨酸(美美尼诺普尔和Papageerou和papageageerou和20202020202020202020202号)的受体拮抗剂。在过去的几年中,一种新的蛋白质吸引了神经退行性疾病领域的焦点:43 kDa的交易反应DNA结合蛋白(TDP-43)。过度磷酸化的TDP-43被鉴定为在肌萎缩性侧面硬化症(ALS)和额叶痴呆(FTLD)患者中发现的泛素化蛋白聚集体的主要成分(Neumann等人,2006年)。从那时起,不同的研究已经评估了该关键细胞调节剂在其他疾病中的病理作用,例如:洪廷顿病,亚历山大氏病和进行性性核上麻痹等(Schwab等,2008; Palomo等,2019)。尤其是在AD中,几项研究确定了TDP-43在患者大脑中沉积的影响,使其加剧了记忆力丧失和海马萎缩。此外,在一半被认为患有阿尔茨海默氏病的患者中发现了TDP-43病理学(James等,2016; Meneses等,2021)。与此同时,在过去的几年中,一种新的脑部疾病,称为边缘促销与年龄相关的TDP-43脑病(已故)(已晚),通常会表现出与AD相似的症状(Nelson等,2019)。据估计,迟到是15-20%的痴呆症,而大约40%的痴呆症患者的大脑中有一些TDP-43脑病(Besser等人,2020年)。TDP-43是涉及许多RNA的转录,剪接和运输的重要蛋白质,它主要在其发挥其主要功能的核中发现。但是,在生理条件下,它具有与细胞质的定位平衡,可以在蛋白质总数的5-20%中找到它(Woo等,2017)。在病理条件下,不同的翻译后修饰改变了其动态控制和溶解度。在这些变化中,25和35 kDa和高磷酸化形式的片段是细胞质聚集体的最常见特征(Neumann等,2009; Medina等,2014)。