●革命区块链技术:利用区块链的力量,Justlaw确保所有法律交易和文件都是不可变的和透明的,从而促进了客户和律师之间无与伦比的信任水平。这项创新改变了法律服务的交付方式,灌输了对每次互动的信心。●尖端的人工智能:我们的高级AI算法简化了客户律师匹配过程,保证客户需求与专业知识之间的完美对齐。删除猜测使用户能够迅速有效地访问适当的法律支持。●Bjustcoin(BJC)令牌:我们平台的核心是BJC令牌,BJC令牌是一种强大的实用程序,可激发用户参与度并促进无缝且安全的交易。通过参加BjustCoin和Justlaw生态系统,投资者和用户将加入一个充满活力的社区,致力于改变法律景观,创造成长,协作和持久影响的机会。
根据 2020 年 10 月 22 日第 238/DC1/2020/LSGD 号信函,政府指示科钦公司检查评估的遗留废物数量和由 M/s Zonta Infratech Pvt Ltd 牵头的财团报价,M/s Zonta Infratech Pvt Ltd 是与科钦邦城市污染控制委员会协商后选定的修复 Brahmapuram 市政固体废物堆场的投标人,并提交报告。NIT Calicut 受聘进行无人机调查,该调查于 2021 年 2 月 9 日完成。NIT Calicut 提交的最终报告于 2021 年 4 月 7 日提交给政府。根据 2021 年 6 月 27 日的 GO(Rt)No.1219/2021/LSGD,政府已指示向通过招标程序确定的机构 (M/s Zonta) 发出工作指令。根据 2021 年 7 月 22 日第 1 号理事会决议,该工作已授予 M/s Zonta Infratech Pvt Limited,该机构负责生物采矿工作,请参阅 2021 年 7 月 23 日 LOA 编号:NO.MOE2/3760/20。废物转化为能源项目:
评估心脏骤停后昏迷患者的神经功能完整性仍是一个悬而未决的挑战。昏迷结果的预测主要依赖于专家对生理信号的视觉评分,这种方法容易产生主观性,并使相当多的患者处于预后不确定的“灰色地带”。对听觉刺激后脑电图反应的定量分析可以让我们了解昏迷时的神经功能以及患者苏醒的机会。然而,由于协议繁琐多样,标准化听觉刺激后的反应还远未在临床常规中使用。在这里,我们假设卷积神经网络可以帮助提取昏迷第一天对听觉刺激的脑电图反应的可解释模式,这些模式可以预测患者苏醒的机会和 3 个月后的存活率。我们使用卷积神经网络 (CNN) 对多中心和多方案患者队列中在标准化镇静和目标体温管理下昏迷第一天对听觉刺激的单次脑电图反应进行建模,并预测 3 个月时的结果。对于接受治疗性低温和常温的患者,使用 CNN 预测觉醒的阳性预测率分别为 0.83 ± 0.04 和 0.81 ± 0.06,预测结果的曲线下面积分别为 0.69 ± 0.05 和 0.70 ± 0.05。这些结果也持续存在于处于临床“灰色地带”的一部分患者中。网络预测结果的可信度基于可解释的特征:它与脑电图反应的神经同步性和复杂性密切相关,并受到独立临床评估的调节,例如脑电图反应性、背景爆发抑制或运动反应。我们的研究结果强调了可解释的深度学习算法与听觉刺激相结合在改善昏迷结果预测方面的巨大潜力。
在Scala/C ++中构建和部署的高性能计算机视觉和建议服务,使用CAFFE/MXNET处理500m+每月请求。●社交媒体SaaS平台的后端Scala开发。AWS微服务堆栈。●研究并发布了生产计算机视觉分类和检测模型。●创建和托管的专有数据集用于培训深度学习模型
许多现有的运动预测方法都依赖于符号感知输出来生成代理轨迹,例如边界框,路图信息和traf-fight。这种符号表示是现实世界的高级表现,它可能会使运动预测模型容易受到感知错误的影响(例如,在检测开放式录音障碍时失败),而缺少场景中的显着信息(例如,糟糕的道路条件)。另一种范式是从原始传感器中端到端学习。但是,这种方法缺乏解释性,需要大量的培训资源。在这项工作中,我们提出将视觉世界的标记化为一组紧凑的场景元素,然后利用预先训练的图像基础模型和LiDAR神经网络以开放式播音方式进行编码所有场景元素。图像基础模型使我们的场景令牌可以编码开放世界的一般知识,而LiDAR神经网络编码几何信息。我们提出的表示形式可以有效地用几百个令牌编码多帧多模式观察,并且与大多数基于变压器的体系结构兼容。为了评估我们的方法,我们使用了带有凸轮嵌入的Waymo开放运动数据集。通过Waymo开放运动数据集进行的实验表明,我们的方法会导致对最先进的表现的显着改善。
扩散模型代表文本到图像生成中的新范式。除了从文本提示中生成高质量的图像之外,诸如稳定扩散之类的模型已成功扩展到了共同生成的分段伪遮罩。但是,当前的敏感主要依赖于提取与用于图像合成的及时单词相关的关注。这种方法限制了从文本提示中未包含的单词代币中得出的分割掩码的产生。在这项工作中,我们介绍了开放式摄影注意力图(OVAM) - 用于文本到图像扩散模型的无训练方法,可为任何单词生成注意力图。此外,我们提出了一个基于OVAM的轻巧优化过程,用于查找具有单个注释的对象类的准确注意图。
帕金森运动症状与基底神经节中病理上增加的β振荡有关。虽然药理学治疗和深脑刺激(DBS)降低了这些病理振荡,并随着运动性能的提高而降低了这些病理振荡,但我们着手探索神经反馈作为内源性调节方法。我们通过植入的DBS电极实施了病理性亚丘脑β振荡的实时处理,以提供深脑电气神经反馈。患者在训练后几分钟内通过视觉神经反馈进行了视觉控制的β振荡活动。在一次单小时的训练中,β振荡活动的减少逐渐变得更强大,我们观察到了运动性能的提高。最后,即使去除视觉神经反馈后,对深脑活动的内源性控制也是可能的,这表明在短期内保留了神经反馈获得的策略。此外,我们观察到2天后学习的心理策略在没有神经反馈的情况下进行了改善。进一步训练深脑神经反馈可能会通过使用神经反馈优化的策略来改善症状控制,从而为帕金森患者提供治疗益处。
具核梭杆菌是一种存在于口腔微生物群中的革兰氏阴性厌氧杆菌,与结直肠癌有关 ( 1 , 2 )。结直肠癌是全球第三大常见癌症,也是癌症相关死亡的第二大原因。近年来,具核梭杆菌因其在结直肠癌发展中的潜在作用而备受关注 ( 3 , 4 )。多种风险因素都会影响癌症的发展,包括年龄、家族病史、遗传基因(如林奇综合征和家族性腺瘤性息肉病)、炎症性肠病个人病史(如克罗恩病或溃疡性结肠炎)、肥胖、缺乏运动、吸烟、大量饮酒、富含红肉和加工肉类而纤维含量低的饮食。研究表明,饮食模式在结直肠癌的发展中起着重要作用 ( 5 )。通过经验性饮食炎症模式 (EDIP) 评估确定的某些饮食与肠道炎症增加和 F. nucleatum 阳性结直肠癌风险增加有关 (6)。饮食引起的肠道炎症会改变肠道微生物群,促进结直肠癌的发生。大量食用红肉和加工肉类与结直肠癌风险增加有关,这可能是由于硝酸盐、亚硝酸盐和杂环胺等致癌物所致 (7)。饮食习惯和抗生素使用等环境因素也可能影响 F. nucleatum 在结肠中的行为。另一方面,肠道微生物在启动和促进结直肠癌发展中的作用也越来越被人们所了解。肠道微生物群与结直肠癌之间存在复杂的关系。最近的研究已发现溶没食子酸链球菌、产肠毒素脆弱拟杆菌、具核梭杆菌和大肠杆菌是与结直肠癌相关的潜在病原体 (8)。尽管肠道菌群因人而异,但某些细菌种类一直与结直肠癌有关。据报道,溶没食子酸链球菌是一种革兰氏阳性球菌,是 CRC 的危险因素 (9)。产肠毒素脆弱拟杆菌 (ETBF) 会产生脆弱拟杆菌毒素 (BFT),已知会引起腹泻并导致炎症性肠病 (IBD) (10)。类似地,研究发现,与健康个体相比,肠道共生菌大肠杆菌在结直肠癌患者的结肠中定植的水平更高 ( 11 , 12 )。然而,对这些风险因素的反应可能因种族和地理位置而异,从而影响 CRC 的分布和预后。尽管具核梭杆菌是人类口腔的常见菌,但其在 CRC 患者的结直肠肿瘤和邻近组织中的丰度较高 ( 13 , 14 )。一些研究表明具核梭杆菌与 CRC 之间存在潜在联系 ( 1 , 15 )。据报道,这种细菌在临床前模型中会促进炎症、削弱免疫反应、改变肿瘤微环境、促进化疗耐药性并促进肿瘤生长和转移 ( 16 , 17 )。此外,F. nucleatum 与 CRC 患者的预后不良有关 ( 18 )。F. nucleatum 在结直肠组织中的存在引起了人们对其作为诊断标记物或