Micro-ultra 15-3快速填充糊剂是一种刚性,轻(低密度)系统,满足了25.853a,满足了航空航天和飞机工业的严格要求。新技术和空间年龄材料使应用产品的重量减少了30-35%。这是内部复合材料的修复和表面饰面的理想材料,该复合材料有资格使用多个OEM规格*。微尿素15-3的耐化学性非常好;该系统将承受常规维护中使用的清洁解决方案。Micro-ultra 15-3为用户提供了一个光滑,奶油系统,具有高物理性能,重量较小。微乌尔特拉15-3是非导电的,具有出色的饰面特性。微乌尔特拉15-3具有玻璃纤维,SMC,BMC,RIM,FRP,Graphite和Kevlar复合材料的良好键合和填充质量。它可以承受振动和影响,而不会损失粘结或表面织带。微型乌尔特拉15-3可以通过碎片,挤压,刮刀或任何扁平型工具来应用。设置后,它可以通过机械或手动打磨或打磨完成。装饰覆盖物也可以可行; Micro-ultra 15-3不会流血。典型的应用包括:在预直或湿的上式 /注入复合材料中填充孔隙率和布料印象,填充孔隙度和外部复合材料上的表面斑点,内部复合材料上的表面填充,更新和修复破裂或破裂的区域,大修,大修,并在内部零件,边缘填充,边缘填充以及最终的制造和更多最终面积的区域和更多面积。
克制是在执法实践中采用的,以实现个人的控制,以促进逮捕。要使用的适当约束方法必须在最大程度地减少伤害或死亡的风险之间取得可接受的平衡,同时最大程度地提高实现控制速度的有效性。可以采用两大类的约束类别:1。物理和2。化学约束。The modalities of physical restraint include: Use of implements (hand/leg cuffs/ ligature, restraint suits, spit hoods, batons), Manual (prone position with without supple-mental ligature application; neck holds or other methods to incapacitate), Firearms (standard weapons, impact rounds, Kevlar belts) and Conducting electrical devices (TASERs, stun guns).因此,物理约束方式的利用可能涉及:将手铐的应用在手腕上(正面/背后/脚踝)和脚踝,俯卧的身体定位,肢体的约束,倾向于俯卧的位置,在死者的背上施加了向下压力,而他/她是她/她是proce的位置。hog脚/ho乱的位置(易于最大约束位置)和吐罩的使用。约束的化学方式可以包括:使用泪液和化学刺激物(胡椒喷雾剂,CS和CN气体)以及镇静药物(神经益生类,苯二氮卓类药物,氯胺酮)的使用。本演讲将审查人类通风和呼吸的正常生理学,讨论上述每种约束方式的效用在躯干的背面施加了大量的力,而在非法麻醉药物的中毒状态下,在精神病状态下俯卧的位置积极约束。
摘要:对负担得起的假体的需求,尤其是在低收入和中等收入国家(LMIC)的需求很大。当前,大多数假肢插座是使用单岩性热塑性聚合物(例如PP(聚丙烯))制造的,这些聚合物缺乏耐用性,强度和表现出蠕变。另外,它们会用消费热固性树脂和昂贵的复合填充剂(例如碳,玻璃或凯夫拉尔纤维)加固。但是,amputees在获得负担得起的假肢插座方面所面临的未满足需求,要求解决方案。这项研究利用自我增强的PET(Tereylyene Terephenate)(一种负担得起且可持续的复合材料)生产定制的插座。使用可重复使用的真空袋和专用的固化烤箱,推进了独特的插座制造技术的开发,我们测试了制造的插座以获得最大的强度。随后,为其在行动过程中的性能创建和评估了假肢设备。插座的宠物材料的机械和结构强度达到了132 MPa和5686 N的最大强度。发现表明该材料有可能用作制造功能插座的可行替代品。此外,考虑了诸如材料成本,插座重量和强度之类的决策标准,进行了TOPSIS分析以比较插座的性能指数。结果表明,宠物插座在负担能力,耐用性和强度方面优于其他材料。该方法在不到两个小时的时间内成功制造了复杂形的患者插座。此外,步行测试表明,截肢者可以在没有中断的情况下进行日常活动。这项研究在实现负担得起的LMIC的假体方面取得了重大进展,旨在提供针对LMIC量身定制的特定于患者的负担得起的假体。
设计的纳米复合材料传统上被称为木材,其构建块(细胞)被扩展的纤维素链的难以置信的强度和僵硬的纳米级纤维增强,这些纤维素链的纤维纤维被称为纤维素基本原纤维或微纤维(3-5 nm宽)(3-5 nm宽),并在其上(3-5 nm宽),并将其捆成(15-50 nm宽)(1.5-50 nm宽)。[3,4-7]这些原纤维是高度结晶的,其拉伸强度(σ)为2-7.7 GPa,≈140gpa的晶体弹性模量(E)和≈1.6g cm-cm-cm-3的降低(ρ)。[8]要将其概述置于透视上,它们在机械上与凯夫拉尔(Kevlar)相媲美,大约七倍强,但比钢重五倍,并且其热膨胀较低(见表1)。这些奇妙的天然纳米材料无处不在,可在所有木本和非木质植物以及其他来源(例如细菌,藻类和海洋动物膜中膜)中发现。[7,9–11]此外,它们易于提取,可生物降解,可再生和碳中性。因此,在21世纪初期,纳米级纤维素原纤维受到了广泛的关注,以制造过环友好,轻巧和健壮的(复合)伴侣,相关主题可能构成了木纳米技术学最成熟的研究。纳米级纤维素原纤维被提取的纳米纤维素原纤维,而不论cel-lulosic源具有两种通用形式。[7,11,12]第一种原纤维形式是半晶体,通常宽3-50 nm,长约1–3 µm,具有较高的纵横比和柔韧性,称为纤维素纳米纤维或纳米纤维(CNF)。通常,CNF是由木质纤维素材料(即木材和植物 - 颗粒形式)产生的。
“三明治结构的特征是使用由一个或多个高强度外层(面)和一个或多个低密度内层(核心)组成的多层皮肤”。在1944年[1]的第一批文章之一中提出了这一定义,该定义是在专门用于三明治结构的第一篇文章中[1],并且在用于这种类型的结构[2-7]中以各种形式采用。今天,对于核心和皮肤而言,今天都有大量的材料和架构组合[8]。但是,对于航空应用,认证极大地限制了可能性。今天,只使用由Nomex,铝合金制成的蜂窝芯或质量非常好的技术泡沫。sim,对于皮肤,我们主要根据玻璃,碳或凯夫拉纤维发现铝合金和层压齐。根据Guedra-Degeorges [9],也是[10]中描述的一些堆叠的情况(另请参见图22),对于航空应用,皮肤的厚度小于2 mm。三明治分为两类。对称三明治,例如图中所示的三明治1主要用于抵抗屈曲及其弯曲。这种类型的三明治非常适合加压结构或承受空气动力载荷的结构,总体而言,它是迄今为止使用最广泛的结构。在飞机结构中也使用了另一种较不受欢迎的三明治类型:不对称的三明治(见图2)。该皮肤的屈曲抗性由A至于由薄膜稳定的薄皮肤组成的经典机身,一个不对称的三明治由碳层压板中的第一个皮肤组成,称为“工作皮肤”,这将大部分膜胁迫从结构中获取。
空间环境对低地球轨道柔性材料的影响 G. Bitetti (1) 、S. Mileti (1) 、M.Marchetti (1) 、P. Miccichè (1) (1) 意大利罗马“La Sapienza”大学航空航天和宇航工程系,Via Eudossiana 18,邮编 00184。电话 0039-0644585800,传真 0039-0644585670 电子邮件:grazia.bitetti@.uniroma1.it 摘要 未来的长期太空任务基于应用新型材料来替代金属材料,保持相同的机械和热光性能,但降低任务成本并满足结构设计要求。新的充气技术涉及使用柔性材料(纺织品、薄膜和低密度泡沫),以便获得小体积的可包装结构,从而增加有效载荷能力。由于与操作环境相关的破坏性因素,正确选择材料的起点是空间环境测试活动。本工作涉及对用于低地球轨道 (LEO) 充气应用的一些纺织品的测试活动,特别是 Kevlar、Zylon 和 Vectran。已经使用位于罗马 La Sapienza 大学航空航天系的 SASLab 实验室开发的两种不同的空间环境模拟器进行了环境测试,以研究高真空、热循环和原子氧效应。1. 简介未来长期太空探索任务最重要的要求是使用比机械同类产品更轻、更便宜的材料来设计空间结构,以保持相同的结构可靠性并延长使用寿命。将它们包装在更小的体积中的可能性可以降低任务成本。为了满足上述目标,已经开发出一种基于柔性结构设计的有前途的技术。充气技术涉及可展开结构,无论是否可刚性化,它都使用薄材料来减轻重量和提高包装效率:体积比最好的传统系统减少两倍以上。可展开结构可以轻松适应各种形状,生产成本低。过去,可扩展结构一直用于建造空间天线、太阳能电池阵、遮阳板和太空服。目前,越来越多的
新兴的研究主要涉及与未来行业新材料设计有关的环境和经济问题。在过去的几十年中,各种工业部门都试图用天然纤维作为聚合物复合材料的增强剂代替合成纤维。复合材料由于其有利和出色的特性而为一个年龄提供了大量的研究和工业工作。此外,它们可以通过低投资生产和处理[1]。复合材料是纤维/填充剂和矩阵(聚合物)的组合。可以通过使用基本聚合物基质的杂化(一两个纤维)来安排纤维和基质的组合。使用纤维的主要目的是为复合材料提供强度。影响纤维的特性的因素是长度,方向,形状和材料[2]。基于用于制造的聚合物,可以自然或合成选择纤维。纤维称为天然纤维,例如黄麻,拉米,剑麻,大麻,coir,grewia optiva,silk,bamboo等。另一方面,通过各种人造过程制造的纤维称为合成纤维,例如碳,凯夫拉尔,玻璃等。自然和合成纤维在用于制造复合材料的聚合物方面都有其自己的优点和缺点。天然纤维的另一个主要缺点是由于存在纤维素而对水的影响。有时,纤维以混合形式应用于两者的优势与合成纤维相比,天然纤维是环境友好,可再生,便宜,非危险性,非抛光和易于使用的,但是使用天然纤维的弊端与合成纤维相比是低的机械性能[3]。这种亲水性会导致纤维和基质之间的界面粘合不佳。另一方面,合成纤维,是疏水材料,与聚体形成良好的键合。
引言SMP是宏分子的类型,通过更改其宏观特性(例如形状和颜色),然后从其临时形状中恢复其原始形状,从而对外部刺激做出反应。SMP具有轻巧且廉价的优势,并且与形状存储合金(SMA)和形状记忆陶瓷相比,具有低密度,高形状可变形性,良好的生物降解性和易于调整的玻璃过渡温度。SMP的主要缺点是低恢复应力,低变形刚度,较小的能量输出和更长的恢复时间。 为了克服这些缺陷,形状的内存聚合物复合材料(SMPC)已经存在。 对SMPC的研究结果表明,它们具有较高的强度,更高的刚度和由添加填充剂添加的某些特殊特征,这可以比SMP具有进一步的优势。 基于SMP的复合材料通常分为颗粒增强和纤维增强的复合材料。 颗粒增强的SMPC,其填充物为碳黑色,碳纳米管,Fe3O4纳米颗粒等,更多地用作功能材料。 纤维增强的SMPC,其填充剂包括碳,玻璃和凯夫拉尔纤维等,通常由于其良好的机械性能而被用作结构材料。 关于SMP和SMPC的开发和应用有一些出色的评论,例如Liu等人在SMP和SMPC上撰写的评论及其在航空航天应用中的应用。 除此之外,Fengfeng Li等人的一篇文章还向我们解释了形状记忆聚合物及其复合材料在航空航天应用中的进展。SMP的主要缺点是低恢复应力,低变形刚度,较小的能量输出和更长的恢复时间。为了克服这些缺陷,形状的内存聚合物复合材料(SMPC)已经存在。对SMPC的研究结果表明,它们具有较高的强度,更高的刚度和由添加填充剂添加的某些特殊特征,这可以比SMP具有进一步的优势。基于SMP的复合材料通常分为颗粒增强和纤维增强的复合材料。颗粒增强的SMPC,其填充物为碳黑色,碳纳米管,Fe3O4纳米颗粒等,更多地用作功能材料。纤维增强的SMPC,其填充剂包括碳,玻璃和凯夫拉尔纤维等,通常由于其良好的机械性能而被用作结构材料。关于SMP和SMPC的开发和应用有一些出色的评论,例如Liu等人在SMP和SMPC上撰写的评论及其在航空航天应用中的应用。除此之外,Fengfeng Li等人的一篇文章还向我们解释了形状记忆聚合物及其复合材料在航空航天应用中的进展。本评论重点介绍SMP/SMPC材料及其在航空航天领域的应用,其中包括反映天线,SMPC铰链等。我们的目标是跟踪已经完成空间的应用程序
(2024 年 7 月 29 日修订) PGI 225.70—授权法案、拨款法案和其他对外国收购的法定限制 PGI 225.7002 对食品、衣物、织物和手工或测量工具的限制。 PGI 225.7002-1 限制。 (a)(1)(ii)( 1 ) 下面列举了一些包含服饰的产品和服务代码 (PSC) 的示例(但并非全部): (i) PSC 8405、8410、8415、8420、8425、8450 或 8475 中列出的服饰(如外套、头饰、内衣、睡衣、鞋类、袜子或手套)。 (ii) PSC 8430 或 8435 中列出的鞋类。 (iii) PSC 8440 或 8445 中列出的袜子、手套或其他服饰,如腰带和吊带。 (iv) PSC 8455 中列出的徽章或标志。 (2) 本节 (a)(1)(ii)( 1 ) 段列出的 PSC 还包含非服饰物品,如— (i) 遮阳帽; (ii) 凯夫拉头盔;(iii) 手提包;以及 (iv) 塑料识别标签。 (3) 应单独分析每件物品以确定其是否为服装,而不能仅依靠 PSC 来作出该判定。 (4) 某物品被排除在适用于服装的贝里修正案的国外来源限制之外,并不妨碍将 DFARS 225.7002-1 中的另一项贝里修正案限制应用于该物品的组件。 (5) 小型武器防护插件 (SAPI 板) 是添加到服装中且通常不与服装关联的物品的一个例子。因此,SAPI 板不作为服装纳入贝里修正案的管辖范围。但是,SAPI 板中使用的织物仍然受贝里修正案的国外来源限制。如果 SAPI 板中使用的织物是合成织物或涂层合成织物,则该织物中使用的纤维和纱线不受《贝里修正案》的约束,因为该织物是最终产品的组成部分,而非纺织品(参见 DFARS 225.7002-2 (m))。示例:如果合成纤维或纱线从外国 X 获得并在美国编织成合成织物,然后将其纳入在外国 Y 制造的 SAPI 板中,则 SAPI 板符合《贝里修正案》。
在硬壁、封闭截面风洞中进行测量对于开发安静的飞机和验证计算结果是理想的,而开放式喷气消声设施在声学上是更好的测量环境;封闭截面风洞对测试条件的空气动力学特性提供了很高的信心。飞机的气动噪声仍然是政府和工业界面临的主要问题,封闭截面风洞中声学测量的准确性和有效性至关重要。该项目始于现有概念;增强和修改技术以适应各种风洞设施。在工业环境中成功实施麦克风阵列后,开始了进一步的研究以改进物理技术。此类测试的限制之一是使用安装在风洞壁上的麦克风阵列时信噪比 (SNR) 较差。这可能会限制辨别接近或低于设施背景噪声水平的声源的能力。本研究的第二部分旨在研究传感器安装细节如何帮助提高信噪比。本报告介绍了麦克风安装策略的系统研究。结果表明,将单个麦克风凹进麦克风直径 (d) 的深度 (最多 2d) 可带来高达 3dB 的改善。将凹进深度增加到 2d 以上可带来高达 10dB 的改善,凹进深度达到 10d 可带来高达 20dB 的改善。最大的改善发生在 25 kHz 以下,尽管在 0 到 48 kHz 范围内也有改善。埋头凹槽的效果要么没有改善,要么背景噪声水平增加高达 20dB,这可能是由于凹槽孔径内的腔模式振荡。观察到不同密度的 Kevlar 布和丝绸覆盖物之间的 SNR 存在显著差异。当在凹进阵列的地板上添加声学泡沫衬里时,观察到背景噪声水平降低了 5 到 10dB。总体而言,这项研究的结论是,使用带有声学泡沫衬里的凹进阵列可以显著提高硬壁风洞测试中的麦克风阵列 SNR。研究的最后一部分旨在找到改进给定数量传感器的麦克风阵列的方法,观察风洞中测试模型的噪声源的方向性。主要关注的是找到阵列作为源定位可行工具的范围,并确定阵列范围极端处的源的误差,以改进未来的测量技术。