1,2 学生,NHVPS,班加罗尔 3 讲师,NHVPS,班加罗尔 摘要:自 20 世纪 30 年代以来,宇航服一直是太空探索不可分割的一部分。在 21 世纪,太空探索面临着比以往更多的挑战,为了满足日益增长的需求,一些公司开始考虑宇航服设计。宇航服存在许多问题,包括笨重、水循环问题、过时等 [13]。这些问题都有不同的解决方案,但这些公司的任务是将所有这些问题解决后整合到一件宇航服中。这些问题通过采用混合机械压力和聚乙烯宇航服得到了解决。与麻省理工学院的 BioSuit 类似,我们的宇航服使用机械压力来提供必要的压力,但通过使用相变材料 Rubitherm RT82,BioSuit 不再需要使用电源持续供热。聚乙烯纳米颗粒层可提供必要的辐射防护。关键词:机械压力、聚乙烯、石墨烯、碳纳米管、相变材料、凯夫拉简介:宇航服是在超地球条件下保护人体的服装。它们主要为宇航员提供压力、氧气、水、冷却、防电离辐射和微陨石的保护。现有的宇航服被称为舱外机动装置 (EMU)。SpaceX 等私人组织已于 2026-2027 年启动火星登陆计划 [4]。随着这一目标的临近,SpaceX、NASA、JPL 和其他公司一直在寻找适合这项任务的宇航服。由于太空技术的高速发展,当今世界对更好的宇航服的需求比以往任何时候都更为迫切。目前的宇航服存在许多问题,如漏水 [8]、音频/无线电通信问题、行动障碍等。解决这些问题对于宇航员的安全是必要的,尤其是考虑到未来的火星任务即将到来,而这类任务需要稍微多功能的设计。就火星而言,开发宇航服需要我们考虑到其恶劣的气候,那里辐射高,大气压只有 600-700 Pa。 [1] 我们也知道太空中的压力为零,所以深空和火星宇航服的开发有很大不同。因此,我们的目标是打造一套适用于这两种任务的多功能宇航服。文献综述:NASA xEMU https://oig.nasa.gov/docs/IG-21-025.pdf
航空职业 A-Z 航空工程师:他或她开发、设计和测试飞机、导弹、卫星和其他系统。空运代理:此人的工作是监督货运站、记录空运货物并安排交货。空运/行李处理员:他或她装卸货物和行李、驾驶行李牵引车并操作传送带、叉车和其他空运处理设备。飞机装配工:他或她组装、装配和安装预制部件以制造固定翼或旋翼飞机或飞机子组件。飞机装配检查员检查飞机组件是否符合工程规范。他们受雇于飞机和飞机子组件制造商。这也可能包括制造飞机上的所有部件。飞机复合结构工人:随着石墨和凯夫拉纤维等现代飞机材料技术的进步,这一行业已成为一项非常有趣且具有挑战性的行业。该行业的技术人员负责维护、修理和制造塑料、玻璃纤维和蜂窝结构部件,例如飞行控制装置(襟翼、扰流板、升降舵)、机头雷达罩和各种其他蜂窝结构部件。培训包括:玻璃纤维蒙皮修复。金属蒙皮修复。飞机窗户返工。热焊修复。飞机电镀工:该行业需要通过电化学过程在飞机零件上镀上一层薄保护层。各种金属都经过电镀,例如铬、镍、银、铅锡、铜、镉。这些金属用于防腐蚀,并将磨损的部件重建为原始标准和尺寸。他们还使用特殊工艺对铝和镁进行防腐蚀处理。培训包括以下内容:实验室分析,因为所有电镀溶液均在我们自己的设施中制备和测试。电化学和电学原理。不同金属的表面处理。飞机维修工程师 (AME):他或她诊断、调整、维修、更换或大修飞机发动机和组件,例如液压和气动系统、机翼和机身,以及功能部件(包括索具、表面控制和管道),以确保适航性。该职业领域包括以下内容:飞机电工:任何现代飞机的令人满意的性能在很大程度上取决于所有电气和系统的持续可靠性。飞机电工必须能够诊断电气系统的故障,进行定期检查,维护、维修和检修所有电气系统
生命支持元件,并在停靠乘员舱时调节热控制。此外,ESM 还可用于携带额外的非加压有效载荷。ESM 依靠独特的四翼太阳能电池阵列,每个机翼由三个独立的面板组成,发射后将展开至 7 米长,从而使航天器的“翼展”达到 19 米。15,000 个太阳能电池产生的能量足以为两个家庭供电。四个阵列中的每一个都围绕两个轴转动,以便能够与太阳对齐以实现最大发电量。ESM 的外部覆盖有凯夫拉纤维,以防止微陨石和空间碎片造成的损坏。此外,航空电子设备等关键冗余系统位于模块的相对两侧。每个 ESM 都由 20,000 多个零件和部件组成,从电气设备到发动机、太阳能电池板、油箱和生命支持用品,包括大约 12 公里长的电缆。任务结束时,欧洲服务模块将在地球大气层中烧毁,而乘员舱将溅落到太平洋。 即将到来的阿尔忒弥斯任务的五个其他服务模块 空客已与欧空局签订合同,建造总共六个欧洲服务模块(ESM-1 至 6),欧空局正在向猎户座计划投资约 20 亿欧元。 第一个模块 ESM-1(命名为“Bremen”)正在等待即将到来的阿尔忒弥斯一号任务的发射。 ESM-1 于 2018 年 11 月交付给 NASA,并与猎户座乘员舱对接。 在俄亥俄州的 NASA 普拉姆布鲁克站设施对完全集成的航天器进行热真空测试后,欧洲于 2020 年 12 月正式将 ESM-1 移交给美国。 回到佛罗里达州的肯尼迪航天中心,它现在已集成在 SLS 火箭上,等待推出到发射台。 2021 年 10 月,第二艘 ESM 通过货机从不来梅飞往肯尼迪航天中心。它将成为 Artemis II 任务的一部分,该任务将搭载首批宇航员绕月飞行并返回地球。ESM-2 将与第二个猎户座乘员舱配对,并再次接受进一步的广泛测试,然后与 SLS 发射器集成——这个过程大约需要两年时间。Artemis II 目前计划于 2024 年发射。2020 年 5 月,ESA 和空客签署了建造第三艘 ESM 的合同。该模块将为 Artemis III 任务提供动力,该任务将见证第一位女性和第一位有色人种踏上月球。该模块的结构已经完成,子系统和设备集成正在空客洁净室中进行。目前预计这项任务最早不会在 2025 年完成。另外三台 ESM 将用于 Artemis IV 至 VI 任务,其中前两台是欧洲对国际门户的贡献,该空间站计划在月球轨道上组装。太空实验室、哥伦布、ATV:载人航天领域的丰富经验 在 ESM 的开发和建设过程中,空客不仅依靠来自欧洲十个国家(比利时、丹麦、法国、德国、意大利、荷兰、
复合材料的历史可以追溯到古代文明,人们首先将不同的材料组合在一起以创造强大耐用的产品。在公元前1500年,埃及人使用泥土和稻草的混合物来建造结构,而蒙古人则在公元1200年开发了第一个复合弓。现代复合材料始于1900年代初期塑料的发展,该塑料的表现优于源自动植物的天然树脂。但是,仅塑料不足以为某些应用提供必要的强度。在1935年,欧文斯·康宁(Owens Corning)引入了玻璃纤维,该玻璃纤维彻底改变了纤维增强聚合物(FRP)行业。在复合材料中使用玻璃纤维导致了重大进步,包括开发可用于遮盖电子雷达设备的透明材料。在第二次世界大战期间,对轻质和强大材料的需求导致了复合材料行业的快速增长。第一个复合商用船船体于1946年推出,诸如Pultrusion之类的创新使得能够生产出可靠的强玻璃纤维增强产品。今天,复合材料被广泛用于各种行业,包括建筑,运动器材和防弹衣。凯夫拉尔和碳纤维等芳香纤维的开发进一步推进了行业。风力涡轮机叶片已成为增长的重点,随着材料的不断改进以提高效率和降低成本。由可再生能源技术的进步驱动,复合材料行业继续发展。复合材料的演变跨越了数千年,埃及人和美索不达米亚人等古老的文明利用泥土和稻草的混合物来建造强大的建筑物。稻草在生产陶器和船只中仍然是至关重要的组成部分,而后来蒙古人使用木材,骨头和动物胶发明了第一个复合弓。现代复合材料始于20世纪初期塑料的发展,该塑料的表现优于源自动植物的天然树脂。但是,仅单个塑料不足以用于某些结构应用,从而导致欧文斯·康宁(Owens Corning)在1935年引入玻璃纤维。这标志着纤维增强聚合物(FRP)行业的开始,此后一直由战时需求驱动,包括开发用于军用飞机和雷达屏蔽的复合材料。第二次世界大战的结束导致了对复合材料的需求激增,像勃兰特·戈德沃斯(Brandt Goldsworthy)这样的创新者介绍了新的制造工艺和产品,包括玻璃纤维冲浪板和纯种技术。今天,复合材料继续在包括航空航天,汽车和运动器材在内的各个行业中发挥着至关重要的作用,并具有材料科学和技术方面的进步,从而创造了更轻,更强和更广泛的结构。复合材料近来变得越来越突出,在各种应用中逐渐取代钢组件。复合材料行业仍在不断发展,越来越关注可再生能源。风力涡轮机叶片,尤其是推动尺寸限制,需要高级复合材料。研究继续探索纳米材料和基于生物的聚合物等新领域。这些混合材料结合了两种或多种不同的材料,其特征是它们的基质和增强纤维。复合材料的概念可以追溯到古代文明,例如埃及人和美索不达米亚人,他们使用泥土和稻草来建立更强的结构。后来,蒙古人使用木材,骨头和动物胶的组合发明了第一个复合弓。现代时代始于1900年代初期塑料的发展。新的合成材料改善了自然树脂性能,而康宁玻璃的意外发现玻璃纤维导致1936年的“玻璃纤维”注册。在第二次世界大战期间,聚酯树脂从德国被盗,可以生产玻璃纤维复合材料。玻璃纤维与聚酯纤维相结合,可产生令人难以置信的坚固而轻巧的结构。研究揭示了其他好处,包括射频信号的透明度。第二次世界大战后,战争行业以外的市场出现了,例如海洋市场,它在1946年看到了第一批商业复合船船体,以及汽车市场,随着1953年的雪佛兰Corvette的推出。
许多日常物品的存在归功于塑料,塑料是一种多功能材料,具有许多应用。从包装到建筑,医疗保健到电子产品,塑料已经彻底改变了各种行业。但是,了解其行为,尤其是其熔点,对于利用其全部潜力至关重要。塑料由聚合物组成,具有重复亚基的大分子,赋予其独特的特性,例如柔韧性和可可性。熔点是指塑料从固体到液态的温度,确定其在各种应用中的变形,可回收性和利用率。理解塑料熔点的重要性不能被夸大。它影响了行业和日常使用的处理,绩效和结构完整性。知道塑料转化的温度范围对于确保其功能和质量至关重要。在本文中,我们将深入研究理解塑料熔点的重要性,影响它的因素,塑料的常见类型及其各自的熔点以及这些知识的实际应用。了解塑料的熔点是至关重要的,这是由于其在行业和日常生活中的深远影响。此特征是影响塑料材料的处理,塑形和性能的关键参数。*质量控制:了解熔点可确保塑料在其指定的温度范围内处理,从而维持最终产品的结构完整性和功能性能。绝对!这就是为什么理解此属性至关重要的原因: *制造过程:知道塑料的熔点对于工业过程至关重要,决定将其模制或形成特定形状的温度。*产品开发:工程师和产品设计师依靠对熔点的知识来创建创新和耐用的产品,并根据其熔化特性选择适当的塑料材料。塑料的熔点是回收过程中的关键因素,因为它决定了有效加工的最佳温度。不同的塑料具有不同的熔点,需要特定条件才能有效回收它们。通过了解这些熔点,回收设施可以优化其流程,从而通过减少废物和支持循环经济来促进环境可持续性。此外,了解塑料的熔点对于确保塑料暴露于高温(例如汽车或电子设备)的应用中至关重要。此外,消费者对塑料熔点的意识使个人有能力做出有关使用和照顾塑料产品的明智决定。这种理解可以帮助避免将塑料暴露于可能导致变形或释放有害物质的条件下,从而促进产品的寿命和安全性。塑料的熔点受几个关键因素的影响,包括聚合物的分子结构,其分子量,结晶度和组成程度。不同类型的塑料表现出不同的特性和融化行为。例如,与高度分支或交联的聚合物相比,具有最小分支的线性聚合物的熔点往往更高,而分子量较高的聚合物通常需要更多的能量才能融化。塑料的热行为受链结构,组成和外部因素的影响。与随机共聚物相比,由于聚合物链相互作用的变化,与随机共聚物相比,单体单元具有特定排列的共聚物可以表现出明显的熔点。添加剂,例如增塑剂,阻燃剂和增强剂可以改变聚合物基质内的分子间相互作用,从而影响其熔融行为。填充剂和钢筋会影响热导率,结晶动力学以及最终的熔点。了解分子结构,组成和外部影响之间的复杂相互作用对于在各种应用中选择和加工塑料至关重要。例如: *低密度聚乙烯(LDPE)的熔点范围从105°C到115°C,使其适用于包装膜和容器。*高密度聚乙烯(HDPE)在130°C至135°C附近具有较高的熔点,从而在管道,瓶子和工业容器中使用。*聚丙烯的高熔点范围从160°C到170°C,非常适合汽车组件,医疗设备和食品容器。*聚氯乙烯的熔点范围为100°C至160°C,具体取决于配方和添加剂,适用于管道,电缆绝缘和建筑材料。塑料可以分为结晶和无定形类型。*通用聚苯乙烯(GPP)在200°C至220°C的近似熔点上表现出熔点,使其适用于注入成型和挤出过程,并在消费品,包装和可支配的餐具中应用。*高影响的聚苯乙烯(臀部)的熔点略低,范围从180°C到200°C,使其适用于冰箱衬里和包装材料。*聚对苯二甲酸酯在250°C至260°C附近具有相对较高的熔点,使其成为饮料瓶,食物包装和合成纤维的首选。*聚碳酸酯表现出较高的熔点,范围为250°C至300°C,具有出色的冲击力和透明度,适用于各种应用。塑料材料的清晰度使其适合各种应用,要求耐用性和透明度,包括眼镜,电子组件和汽车零件。ABS热塑性的中等熔点,通常从210°C到240°C,使其可以在强度,抗冲击力和可加工性之间取得平衡。这种多功能性在汽车,电子和消费品等行业中具有多种用途。了解塑料的温度范围对于关于材料选择,处理参数和应用适用性的知情决策至关重要。这种知识是利用塑料独特特性的基础,同时确保各个行业的最佳性能。温度范围在制造,包装,建筑,医疗保健和汽车等应用中起关键作用。但是塑料到底是什么?在制造业中,知道温度范围可以精确控制注射成型和挤出。在包装中,选择具有特定温度的塑料材料可确保产品完整性和安全性。消费品,例如厨具和电子产品,需要可以承受不同热条件的塑料。建筑和基础设施应用需要热稳定性和对温度波动的抗性。在医疗保健中,精确的温度特征对于医疗设备,设备和药品包装至关重要。了解温度范围可确保在各种存储条件下进行灭菌,安全使用和产品完整性。在汽车和航空航天部门中,温度范围显着影响内部和外部组件的材料选择。在车辆内部,外部装饰和飞机室内装饰中使用的材料必须承受温度波动,紫外线暴露和机械应力。工程师需要了解温度范围的知识,以选择满足苛刻应用中性能要求的塑料。了解温度范围对于通过回收和废物管理促进环境可持续性至关重要。不同的塑料需要特定的温度才能有效回收过程,从而产生高质量的回收材料。这些知识支持可持续实践,减少塑料废物并促进循环经济。该基础对于开发具有增强热特性的尖端塑料至关重要。在研发中,了解温度范围为材料科学和聚合物工程的创新提供了创新,可以实现新颖的配方,高级加工技术和量身定制的特性。这些知识的应用是多种多样的,包括行业,消费产品,可持续性计划和技术进步。塑料的熔点是一个至关重要的方面,它推动了聚合物研究,可持续制造实践和高性能材料的发展。这个基本财产对包括包装,建筑,电子和汽车的各种行业具有深远的影响。热塑性塑料在加热时可以多次重塑,取决于其化学成分的变化。相反,热固性塑料经历了一种化学反应,可在高温下不可逆地治愈它们。熔点的确定涉及观察物质从固体通过加热过渡到液态的温度。通过认识到熔点的重要性并接受对温度范围的整体理解,我们可以利用塑料材料的全部潜力,同时确保其负责任地融入我们的现代世界。(注意:我使用“写为非母语说话者(NNES)”此文本的重写方法。)可以通过确定其熔点或范围来评估固体有机化合物的纯度。这种方法在化学,药物和材料科学等各个领域至关重要。塑料的熔化特性取决于其分子的排列。晶体塑料具有固定的熔点,而无定形的塑料缺乏特定的熔点,并在加热时会逐渐软化。无定形塑料表现出类似于无定形材料的熔融行为。然而,在冷却和凝固过程中,聚乙烯,聚丙烯和聚乙烯甲基晶体形成晶体区域,影响其熔化过程。加热时,塑料过渡到三个状态:玻璃状状态,橡胶状态和粘性流状态。过渡以四个关键温度标记:玻璃过渡温度,熔化温度,分解温度和流动温度。熔化温度范围取决于塑料的分子结构复杂性。某些塑料的特性包括:塑料的熔化温度受影响其热特性和行为的各种因素的影响。这些关键因素包括:•化学结构:聚合物的分子组成显着影响其熔化温度,不同类型的塑料表现出不同的熔点。•碳氢化合物含量:含有更多碳氢化合物基团的塑料往往具有较高的熔融温度,例如聚乙烯(PE)。•官能团:酯,酰胺或醚键的存在可以改变熔化温度,聚合物(如聚酯和聚酰胺)等聚合物由于强分子间力而具有较高的熔点。例子包括聚丙烯(PP)和高密度聚乙烯(HDPE)。•结晶度:结晶塑料的分子以高度有序的模式排列,增加对热的耐药性并导致较高的熔融温度。无定形塑料具有随机的分子排列,导致温度降低。•共聚物组成:ABS等共聚物中单体的质量比可以影响熔化温度,从而允许定制的热性能。•添加剂:制造过程中引入的耐热添加剂可以改变塑料的熔化温度。塑料的熔化温度在其制造和加工中起着至关重要的作用。热稳定器可以提高这种温度,从而提高热稳定性和对高温应用的适用性。相反,增塑剂降低了熔点,提高了柔韧性和加工性。填充剂(例如玻璃纤维或矿物填充剂)会影响热性能,有时由于结构完整性增强而增加熔化温度。了解熔化温度对于确定适当的塑料形成方法,例如注入成型,挤出和吹塑方法至关重要。超过熔化温度会导致塑料特性的降解,变形和不良变化。在制造和加工中,控制推荐的熔化温度范围可确保塑料产品的稳定性和质量。熔化温度是在塑料材料制造和加工过程中实现所需特性,尺寸准确性以及结构完整性的指南。对霉菌温度和熔体温度如何共同起作用以产生最佳零件质量的深刻理解是必不可少的。将较低的熔体温度与较高的霉菌温度相结合通常会导致最佳性能。建筑行业在很大程度上依赖于管道,配件,绝缘和结构成分的高熔点的塑料。塑料(如聚氯化物(PVC),聚乙烯(PE),膨胀的聚苯乙烯(EPS)提供热绝缘,可承受高温和压力,并且易于塑造成不同的形状。在包装领域,熔化温度决定了用于容器,瓶子和其他应用的塑料的使用。塑料的熔点在确定其对各个行业的各种应用的适用性方面起着关键作用。例如,具有较低熔点的塑料(例如LDPE)非常适合包装冷冻食品或在低温下存储的其他物品,因为它们保持柔韧性且在寒冷条件下具有抗性。相比之下,具有较高熔点(如PP)的塑料是涉及高温存储的包装,因为它们可以承受升高的温度而不会变形。在电子行业中,塑料的熔点对于回收和性能都至关重要。具有较低熔点(如PS)的塑料通常用于生产容易回收的套管和组件,而具有较高熔点的塑料(例如聚酰亚胺)对于制造电路板和需要承受高操作温度的组件至关重要。在医疗部门,塑料被广泛用于制造各种设备和仪器。具有较低熔点(如PVC)的塑料适合生产可回收的可重复使用的医疗设备,而具有较高熔点(例如PTFE)的塑料(例如PTFE)对于需要消毒和高耐用性,可确保患者安全性和设备寿命的设备更为优选。塑料的熔点还显着影响消费品的生产。较低的熔点塑料(如PE)通常用于生产负担得起的家居用品和玩具,因为它们的成本效益和易于处理,而高级消费品(如厨具)(如厨具)通常使用具有较高熔点的塑料,例如PC,例如PC,提供增强的耐用性和耐热性和耐热性。在纺织工业中,塑料纤维的熔点对于制造织物和衣服至关重要。塑料(如聚酯纤维)具有相对较高的熔点,用于生产耐用,抗皱纹的织物,可以在高温下重复洗涤和干燥。用于专门应用,例如耐火服装,诸如芳香纤维(例如Kevlar)之类的材料可提供极大的保护和火焰。在汽车和航空航天扇区中,具有高熔点的塑料对于需要高耐用性和耐热性(例如汽车车身和飞机机身)的制造承重组件至关重要。通过理解并根据其熔点选择适当的塑料材料,行业可以确保其产品的最佳性能,安全性和寿命。在Boyi,我们为提供迎合各种行业的一流注射成型服务而感到自豪。 我们的尖端机器和创新技术可确保每种产品的精确度和一致性。 与我们合作,并体验质量,精度和服务的差异。 让我们通过首屈一指的注射成型服务来使您的视野栩栩如生。 立即与我们联系以了解更多信息并开始您的下一个项目。 在短短2个小时内,我们的工程师将与您联系,以进一步讨论您的项目。 塑料的熔点取决于其类型和化学成分。 例如,低密度聚乙烯(LDPE)在约115-135°C(239-275°F)的融化中,而高性能塑料(如聚醚乙醚酮(PEEK))可以具有高达343°C的熔点(649°F)。 特定的熔点取决于聚合物的分子结构和其他因素。 添加剂会影响塑料的熔点吗? 可以添加热稳定剂以增加塑料的熔化温度,从而增强其热量应用的热稳定性。 在另一侧,增塑剂可以降低熔点,从而提高材料的柔韧性和易于处理。 填充剂和增援部队也会影响热特性,有时由于增加的结构完整性而增加熔点。在Boyi,我们为提供迎合各种行业的一流注射成型服务而感到自豪。我们的尖端机器和创新技术可确保每种产品的精确度和一致性。与我们合作,并体验质量,精度和服务的差异。让我们通过首屈一指的注射成型服务来使您的视野栩栩如生。立即与我们联系以了解更多信息并开始您的下一个项目。在短短2个小时内,我们的工程师将与您联系,以进一步讨论您的项目。塑料的熔点取决于其类型和化学成分。例如,低密度聚乙烯(LDPE)在约115-135°C(239-275°F)的融化中,而高性能塑料(如聚醚乙醚酮(PEEK))可以具有高达343°C的熔点(649°F)。特定的熔点取决于聚合物的分子结构和其他因素。添加剂会影响塑料的熔点吗?可以添加热稳定剂以增加塑料的熔化温度,从而增强其热量应用的热稳定性。在另一侧,增塑剂可以降低熔点,从而提高材料的柔韧性和易于处理。填充剂和增援部队也会影响热特性,有时由于增加的结构完整性而增加熔点。