在我们的第一种情况下(图1),我们计算了美国墨西哥湾沿岸产生的蓝色氢的排放强度,并以氨向荷兰出口。图表1表明,根据3.38 kgco 2 Eq/kgh 2(附录A和B)的设定阈值,使用保守的假设,在欧盟中,来自欧洲墨西哥湾沿岸的出口产品不会以生命周期为基础,在欧盟的生命周期基础上符合资格,并使用保守的假设,用于上游甲烷泄漏,2 Zere甲烷泄漏,2 Zere-carbon运输率和85%的捕获率和85%的水分生产。准确地考虑上游甲烷泄漏值通常被低估了,尤其是在使用国家平均值时会增加生命周期排放强度值(图1和附录C中的C1)。同样,即使在氢生产节点处有100%的捕获率,蓝色氢在欧盟中也不有资格,因为在现实世界应用中所见(附录C中的表图C2),欧盟的较低碳的捕获率可能远低于85%。
1预计全球CO 2在陈述的政策情况下,到2050年1 2预计全球CO 2每模式2的运输排放2,零排放目标到2050年净零排放目标3快速充电器(> 22 kW)2020年所有公共充电器4 4 4 4 4 4 4 4主要城市货运类别6 5 E PRINEFER EDICTER PERICATER PERICATER PERSIDER PERSIDER PERINGER PERS OFIRD PERS OF DISS 2 2. 2019年观察到的选定城市的运输排放13 8观察到的城市中无X运输排放的平均份额,2019年14 9碳网格因子2019(KGCO 2 /kWh)15 10 10 10 10 10个生命周期化石燃料16和电动12米城市巴士城市巴士11标准城市总线的生命周期燃料和电力燃料的生命周期燃料的e 16 12米的燃料的温室气体排放e 16 12电动汽车市场成熟和相关充电基础设施的阶段25盒
本文介绍了一种基于光伏和热能混合太阳能场的设施,该设施配有季节性储水箱和水对水热泵,可作为目前正在建设的萨拉戈萨(西班牙)社会住宅楼的充足能源供应系统。两种互补的软件已用于系统的完整设计、定型和模拟。DesignBuilder 用于根据施工图确定每小时需求,然后实施 TRNSYS 以动态模拟整个能源系统。系统性能已从 3E 方面(能源、环境和经济)通过一些众所周知的关键绩效指标进行了测试。通过结合使用需求模拟软件和使用不同指标(KPI)进行量化获得的结果表明,所提出的解决方案适用于该建筑:计算出的生活热水需求覆盖率约为 80%,回收期为 8.5 年,安装后可避免每年 44,200 kgCO 2 的全球变暖潜能值。总而言之,本文表明这种新颖、高效的供暖系统由于其能源成本低廉且仅需补贴高额初始投资的一小部分,是社会住房的良好解决方案。
尼日利亚的住宅建筑消耗了大量的国家能源,因此实现人口迅速增长的净零建筑行业是一个关键挑战。为了弥合国家一级研究的差距,并支持尼日利亚对到2030年无条件减少排放的承诺,这项研究开发了不同住宅建筑类型的自下而上的原型模型,以估算尼日利亚住宅建筑的能源和物质使用。这创建了住宅股票以及不同原型的概述。该研究使用BuildMe工具计算了尼日利亚住宅建筑库存的基线能量和材料使用,并使用生命周期评估将这些数据转换为CO 2排放。场景是为2020年建模的。尼日利亚的住宅在50年的时间内使用约0.3 kt的材料,每个住宅的能量2404 kWh/yr。年度化,由于材料和能源使用而导致的每住宅2500 kgco 2 -eq。建议实现尼日利亚排放目标的方案将需要提高能源效率,并通过建筑材料的变化和脱碳电网电力来脱碳。
摘要:医院建筑提供医疗服务,费用大量能源消耗和碳排放,进一步加剧了环境负荷。由于对中国医院的生命周期碳排放的研究有限,因此进行了详细的碳计数和比较研究。首先,使用BIM和LCA来量化生命周期每个阶段的住院建筑物的碳排放。其次,根据20份公共建筑物比较了按阶段进行碳排放的差异。结果表明,住院建筑的全寿命碳排放量为10,459.94 kgco 2 /m 2。运营碳排放的比例为94.68%,HVAC(52.57%),设备(27.85%)和照明(10.11%)是主要来源。体现的碳排放量为4.54%,HRB400钢和C30混凝土是碳排放的主要来源。医院在运营碳强度方面仅次于商场,是学校和办公楼的1.71和1.41倍,住院建筑分别是医疗综合体和门诊建筑的3和1.7倍。医院建筑的未来可持续发展应在能源效率和降低碳质量方面促进有效的建筑绩效和良好的环境质量。
图1.1:dagens私人klimafotavtrykk for norge。............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ x Figur 1.3: Beregnet 1,5-graders scenario .......................................................................................................................... xiii Figure 3.1: Current Norwegian lifestyle carbon footprint ................................................................................................. 7 Figure 3.2: Shares of the carbon footprint and of physical consumption for personal transport............................. 8 Figure 3.3: Shares of the carbon footprint and physical consumption for nutrition ................................................ 10 Figure 3.4: Shares of the carbon footprint and of physical consumption for consumer goods .............................. 11 Figure 3.5: Shares of the carbon footprint and of physical consumption for housing ............................................. 12 Figure 3.7: Shares of the carbon footprint and of physical consumption for services............................................. 15 Figure 3.8: Lifestyle carbon footprints of an average and a high-consumption lifestyle ......................................... 17 Figure 4.1: Estimated per capita carbon footprint reduction impacts of low-carbon lifestyle options................. 22 Figure 4.2: Carbon footprint emissions (kgCO 2 e/30m 2 ) prevented with the selected options*........................... 25 Figure 5.1: Estimated 1.5°C scenario for current lifestyle carbon footprint ............................................................... 36 Figure 5.2: Estimated 2°C scenario for current lifestyle carbon footprint ................................................................. 37
本文介绍了实施生物量燃料的区域供暖系统(DHS),这是深度能量翻新演习的一部分,以实现具有最低二氧化碳排放碳的气候溶解校园。该案例研究是为西班牙普通大小的大学的瓦拉多利德大学进行的,具有大陆天气的气氛。在翻新之前,不同的构件具有广泛的化石燃料消耗水平,用于供暖和家庭热水在60至430 kWh/m2Å年之间。该集中式供暖系统的应用允许根据西班牙标准达到100 - 120 kWh/m 2的接近零能量建筑物(NZEB)的最低阈值。这些值对应于在大陆天气条件下的办公室中的最大欧洲。这项全面研究的结果表明,由于拟议的策略,这19座建筑物中有15座达到了NZEB目标。与原始的化石燃料动力锅炉相比,总体二氧化碳排放量下降了92.69%,从而使二氧化碳EMIS sions降低至1.57 kgco 2 /m2Å。因此,可以证明,通过可再生能源DHS的深度能量翻新策略具有在大陆天气条件下为大学实现NZEB的努力。
摘要:包含全球变暖至1.5°C意味着保持在给定的碳预算上,因此能够在2050年之前设计净零碳建筑。与法国住宅建筑相对应的案例研究用于评估实现这一目标的可行性。从2016年建造的实际建筑开始,研究了各种改进措施:降低供暖能量需求,实施生物源性材料和可再生能源系统(地热热泵,太阳能家用热水生产和光伏电力生产)。动态热模拟用于评估炎热时期的能源消耗和过热风险。使用结果呈生命周期评估方法对温室气体排放进行量化,考虑到在过渡期间,出口电力避免了与网格边际产生相对应的影响。避免的影响会减小并在网格被及时“脱碳”时变为零。从这一点开始,该建筑物应为零排放净,但存在不可避免的排放。剩余的温室气(温室气)排放量为5.6 kgco 2 eq/m 2。考虑到森林或植被系统中的隔离,研究了抵消这些排放的可能性。可以达到净零排放水平,但是在国家一级,这将要求将森林生长的整个隔离潜力用于抵消新建筑的排放。建筑产品和设备的循环经济需要考虑进一步降低环境影响。
农业部门的可持续生产引起了人们对提高经济盈利能力的担忧,同时减轻环境影响。这项研究旨在调查稻田生产的经济和环境方面如何在不同的气候区域各不相同。这项研究集中在伊朗的三个主要产生稻田地区 - 马桑达兰,库兹斯坦和法尔斯,作为案例研究领域。实施了生命周期评估(LCA)和生命周期成本(LCC)模型,以确定稻田生产系统的环境和经济指数。此外,还采用农业生态效率来估计稻田生产的可持续性。经济分析表明,马桑达省的盈利能力最高,净收入为每公顷18,112.38美元,而库兹坦省的净收入最低的净收入为每公顷12,160.72美元。从能源和矿产资源使用的角度来看,Mazandaran和Khuzestan省的资源消耗最高,值分别为79,767 MJ和37.79公斤。在全球变暖潜力(GWP)方面,在20年和100年的地平线上,法尔斯省的环境影响最高,排放量分别为7,384.50和7,095.50 kgco₂-同等。然而,在马桑达省观察到了最高的GWP500值,为6,414.89公斤的同等价值。最后,马桑达省在所研究地区实现了最高的生态效率值。虽然马桑达省的帕迪产量在某些方面表现出很大的环境影响,但该地区的有利气候条件导致了更高的收益率,从而获得了更大的经济回报,最终导致了最高的生态效率。
1. 简介 1.1. 国家绿色氢能任务(以下简称“任务”)于 2023 年 1 月 4 日由政府启动,拨款 19,744 千万卢比,旨在将印度打造为绿色氢能 (GH2) 及其衍生物生产、使用和出口的全球中心。它将为印度通过清洁能源实现 Atmanirbhar(自力更生)的目标做出贡献,并为全球清洁能源转型提供借鉴。该任务将实现经济大幅脱碳,减少对化石燃料进口的依赖,并使印度在绿色氢能领域占据技术和市场领导地位。根据该任务以及其他举措,新再生能源部 (MNRE) 提议实施试点项目,用绿色氢能及其衍生物替代化石燃料和基于化石燃料的原料。 1.2.印度新再生能源部于 2023 年 8 月 18 日发布了第 353/35/2022-NT 号 OM 法令,定义了绿色氢标准,并制定了生产绿色氢的具体标准。该定义将温室气体排放(非生物源)的阈值设定为 2 kgCO ₂ eq /kg H 2,以满足第 7 节中定义的系统边界要求。该阈值以过去 12 个月的平均值计算。1.3. 该部还计划制定详细的方法,用于绿色氢及其衍生物的测量、监测、报告、现场核查和认证。它已指定能源效率局 (BEE) 为负责认证绿色氢项目监测、核查和认证机构的主管机构。1.4. 根据这些要求,印度新再生能源部 (MNRE) 目前正在国家绿色氢能使命 (NGHM) 下指定一项认证计划。该计划称为印度绿色氢能认证计划 (GHCI)。