滑动是一种运动系统,其特征是独立驾驶地面车辆的平行胎面。转弯需要向每个胎面命令不同的旋转速度,这激发了内部胎面在转弯中刹车的外部胎面,相反,该胎面被外部拖动。因此,外胎面滑动,即,它的进展要小于其旋转速度给出的位移,并且内部滑动,即它的旋转速度比预期的要多。当车辆在现场转动时,理想情况下,胎面速度相反,两个胎面上都会滑动。仅当两个胎面都具有相同的旋转速度时,不会发生滑动或打滑(在直线运动期间)。可以使用轨道或几个机械链接的轮子建造滑动车辆的胎面。主要区别在于它们与地面的接触斑,轨道比车轮要大得多,从而导致摩擦更高,并且在不规则的地形上具有更好的牵引力[1]。每侧的车轮数通常在两到四个之间变化,是胎面的行为,距离更接近轨道。由于它的机械简单性和高可操作性,载人[2]和无人驾驶[3]地面车辆通常都采用了滑动运动。滑动移动机器人的现场应用包括检查[4],采矿[5],农业[6] [7],搜救[8]和林业[9]等。尽管如此,这种机制意味着高功率要求[10] [11],并使动态建模更加复杂[12] [13]。此外,在倾斜的地形上运行[14] [15],
摘要 本体感觉,即对身体位置、运动和相关力量的感觉,尽管在运动中起着至关重要的作用,但仍未得到充分理解。大多数对体感皮层本体感觉区域 2 的研究只是将神经元活动与手在空间中的运动进行比较。使用运动跟踪,我们试图通过描述 2 区活动与整个手臂运动的关系来阐述这种关系。我们发现,与经典模型不同,整个手臂模型成功地预测了猴子在两个工作空间中伸手触及目标时神经活动特征的变化。然而,当我们随后在主动和被动运动中评估这个整个手臂模型时,我们发现许多神经元在两种条件下都不能一致地代表整个手臂。这些结果表明 1) 2 区中的神经活动包括伸手过程中整个手臂的代表,2) 这些神经元中的许多在主动和被动运动期间以不同的方式代表肢体状态。
该团队将把他们的 PAM 工具应用于跨越十年的 PMRF 数据集,以研究布氏鲸的发声和提示率,并比较随时间和运动行为状态的提示率。工作将包括手动验证先前在数据集中识别的布氏鲸叫声。分析结果还将与已发布的提示率进行比较,以评估随时间、位置或种群的稳定性。将根据环境变量(例如一年中的时间、季节、风和波浪数据)以及其他情境数据(例如与最近的呼叫布氏鲸的距离)检查轨迹运动学。
最近的 3D 物体检测器利用多帧数据(包括过去和未来的数据)来提高性能。然而,他们采用的时间数据融合方法尚未充分挖掘其提高性能的潜力。现有的工作利用多帧数据,这些数据仅根据自我运动融合特定特征,并且由于巨大的计算和内存成本而无法直接应用于长序列。我们发现目前的方法不能有效地利用历史信息,包括历史预测和物体运动。基于我们的研究,我们提出了一种由历史查询和原始查询组成的新型混合查询公式。历史查询包括从历史预测和特征中获得的推断位置和内容查询,这些查询考虑了当前场景中所有物体的运动。此外,我们的方法可以简单地应用于其他类似 DETR 的模型中,以提高性能,而不会引入巨大的计算和内存成本。结果,我们的 History-DETR 在推理时间增加可忽略不计的情况下实现了显着的改进(+1.1% NDS)。
摘要——从大脑活动进行运动学解码有助于开发康复或增强功率的脑机接口设备。从非侵入性脑电图 (EEG) 记录的低频信号与用于运动轨迹解码 (MTD) 的神经运动相关性相关。在本通讯中,研究了从运动前 delta 波段 (0.5-3 Hz) EEG 解码运动运动轨迹的能力,适用于健康参与者。具体来说,提出了两个基于深度学习的神经解码器,称为 PreMovNet-I 和 PreMovNet-II,它们利用运动前 EEG 数据中存在的运动相关神经信息。为此,使用了运动开始前具有不同时间滞后的 150 毫秒、200 毫秒、250 毫秒、300 毫秒和 350 毫秒的 EEG 数据段。使用 EEG 为抓握和举起任务 (WAY-EEG-GAL 数据集) 呈现 MTD,并将各种滞后作为神经解码器的输入。将所提出的解码器的性能与最先进的多变量线性回归 (mLR) 模型进行比较。使用皮尔逊相关系数和手部轨迹作为性能指标。结果证明了使用运动前 EEG 数据解码 3D 手部运动学的可行性,从而能够更好地控制基于 BCI 的外部设备,例如外骨骼/外骨骼。
摘要 — 本研究提出了一种脉冲神经网络,用于根据神经数据预测运动学,从而实现准确且节能的脑机接口。脑机接口是一种解释神经信号的技术系统,可让运动障碍患者控制假肢。脉冲神经网络具有低功耗和与生物神经结构非常相似的特点,因此有可能改进脑机接口技术。本研究中的 SNN 使用泄漏积分和激发模型来模拟神经元的行为,并使用局部学习方法进行学习,该方法使用替代梯度来学习网络参数。该网络实现了一种新颖的连续时间输出编码方案,允许基于回归的学习。SNN 是在从灵长类动物运动前皮层和大鼠海马记录的神经和运动数据上进行离线训练和测试的。该模型通过寻找预测运动数据与真实运动数据之间的相关性来评估,运动前皮层记录的峰值皮尔逊相关系数达到 0.77,海马体记录的峰值皮尔逊相关系数达到 0.80。该模型的准确性与卡尔曼滤波解码器和 LSTM 网络以及使用反向传播训练的脉冲神经网络进行了对比,以比较局部学习的效果。
TS 模式也可以不采用蛇形线来表示对应于整数自旋共振 γG = k 的离散能量值。这里 γ 是相对论因子,G 是旋磁比的异常部分。对于质子,这样的能量值数量为 25,能量步长为 0.523 GeV。对于氘核,只有一个点,总能量为 13.1 GeV。在理想的对撞机晶格中,自旋运动会退化:任何轨道位置的任何自旋方向都会在每次粒子转动时重复。这意味着 TS 模式下的自旋调谐为零,粒子处于 TS 共振状态。在这种情况下,自旋运动对磁场的微小扰动高度敏感,这些扰动与晶格缺陷以及回旋加速器和同步加速器粒子的振荡有关。在实际情况下,自旋简并被消除,因为极化沿着由对撞机晶格缺陷决定的未知方向变得稳定。极化控制由自旋导航器提供,自旋导航器是基于弱螺线管的设备,可在 SPD 相互作用点设置所需的极化方向。导航器对自旋的影响应大大超过小扰动场的影响 [4]。TS 模式下的极化控制方案如图 3 所示。两个对称放置在 SPD 周围的自旋导航器用于稳定 SPD 垂直平面上所需的极化方向(Ψ 是极化和粒子速度矢量之间的角度)[3]。
摘要:目前,在特定而复杂的工业操作中,机器人必须满足某些要求和标准,如高运动学或动态性能、工作空间的特定尺寸或机器人移动元件尺寸的限制。为了满足这些标准,必须对机器人进行适当的设计,这需要多年的实践以及人类设计师的适当知识和经验。为了协助人类设计师进行机器人设计,已经开发了几种方法(包括优化方法)。本文解决的科学问题是开发一种人工智能方法,使用前馈神经网络来估计机器人的工作空间大小和运动学。该方法应用于由基座平台、移动平台和六个运动旋转万向球面开环组成的并联机器人。数值结果表明,通过适当的训练和拓扑结构,前馈神经网络能够根据末端执行器的姿态正确估计工作空间体积值和广义坐标值。
摘要 - 表面肌电图(SEMG)中的肌肉力量和关节运动学估计1对于2实时生物力学分析,对神经肌肉刺激,肌肉动力学和4个动力学的动态相互作用3的2实时生物力学分析至关重要。深度神经网络(DNNS)5的最新进展表明,以完全自动化和可重复的方式改善生物力学肛门-6 YSIS的潜力。ho-7,生物力学分析的小样本性质和物理解释性8限制了DNN的应用。9本文提出了一种新型物理学的低镜头10对逆向学习方法,用于基于SEMG的11个肌肉力量和关节运动学的估计。这种方法无缝12将拉格朗日的运动方程和逆Dy-13 Namic肌肉模型集成到生成的对抗性净-14工作(GAN)的结构性特征解码框架(GAN)框架中,并从小样本数据中进行了15个外推估计。特定于16,拉格朗日的运动方程式被引入17个生成模型,以限制遵循物理定律的高级特征的结构化解码18。通过奖励推断估算值22和物理参考的Cons-21帐篷物理表示,旨在提高20个物理学的政策梯度,以提高20个对抗性学习效率。实验验证是在两种情况下进行的23个(即步行试验和24个手腕运动试验)。31的结果表明,与基于物理学的逆动力学相比,肌肉力和关节运动学的估计值26是公正的,其中27个表现优于选定的基准方法,其中包括28种物理学的卷积神经网络(PI-CNN),Val-29 LINA-29 LINA生成的对手网络(GAN)和Multi-Extremi-Lextreme-extreme Machine(Ml-30-Extreme Machine(Ml-30)。
摘要:背景:运动的头部影响会导致脑损伤。通过仪器的胸罩(IMG)准确量化头运动学可以帮助识别有害影响期间的潜在脑运动。当前研究的目的是评估IMG在各种线性和旋转加速度上的有效性,以允许进行局部影响监测。方法:仪器头盔测试装置(ATD)的滴测试在一系列撞击幅度和位置进行,并同时收集了IMG测量。ATD和IMG运动学也被向前馈送到高度有限脑模型,以预测最大的主应变。结果:影响产生了广泛的头部运动学(16-171 g,1330–10,164 rad/s 2和11.3–41.5 rad/s)和持续时间(6-18毫秒),代表了橄榄球和拳击的影响。对ATD和IMG的峰值的比较表明一致性很高,峰值影响运动学的总和相关系数为0.97,预测的脑应变为0.97。我们还发现IMG和ATD测量的时间序列运动数据之间有良好的一致性,旋转速度(5.47±2.61%)的归一化均方根误差最高,旋转加速度最低(1.24±0.86%)。我们的结果证实,IMG可以在大量加速度下可靠地测量基于实验室的头运动学,并且适合将来的现场有效性评估。