2024 年的《培育原创、促进艺术和保障娱乐安全(禁止假冒)法案》将要求个人或公司对制作、托管或共享个人在视听作品、图像或录音中表演的数字复制品承担损害赔偿责任,而该个人从未实际出现或以其他方式获得批准——包括由生成人工智能 (AI) 创建的数字复制品。托管未经授权复制品的在线服务必须在收到权利人的通知后删除该复制品。为公认的《第一修正案》保护提供了例外,例如纪录片和传记作品,或出于评论、批评或模仿等目的。该法案还将在很大程度上取代涉及数字复制品的州法律,以创建可行的国家标准。发起人:参议员 Coons (D-DE) 最新行动:7/31/24 - 提交并提交给参议院 JUD 委员会。
自主机器人系统近年来引起了越来越多的关注,在这种环境中,环境是机器人导航,人类机器人互动和决策的关键步骤。现实世界机器人系统通常会从多个传感器中收集视觉数据,并经过重新识别以识别许多对象及其在复杂的人拥挤的设置中。传统的基准标记,依赖单个传感器和有限的对象类和场景,无法提供机器人对策划导航,互动和决策的需求的综合环境理解。作为JRDB数据集的扩展,我们揭开了一种新颖的开放世界式分割和跟踪基准,介绍了一种新型的开放世界式分割和跟踪基准。JRDB-Panotrack包括(1)各种数据室内和室外拥挤的场景,以及
大脑功能依赖于脉冲神经元回路,其中突触在融合传输与记忆存储和处理方面发挥着关键作用。电子技术在模拟神经元和突触方面取得了重要进展,而将大脑和受大脑启发的设备连接起来的脑机接口概念也开始实现。我们报告了大脑和硅脉冲神经元之间的忆阻连接,这些连接模拟了真实突触的传输和可塑性。与金属薄膜氧化钛微电极配对的忆阻器将硅神经元连接到大鼠海马的神经元。忆阻可塑性解释了连接强度的调节,而传输则由通过薄膜氧化物的加权刺激介导,从而产生类似于兴奋性突触后电位的反应。反向大脑到硅的连接是通过微电极-忆阻器对建立的。在此基础上,我们展示了一个三神经元脑硅网络,其中忆阻突触经历由神经元放电率驱动的长期增强或抑制。
这种意愿也受到国家/地区法规的推动,这些法规充当“胡萝卜加大棒”的政策,以加速再工业化,从而给生产提升阶段带来更多挑战。在“胡萝卜”方面,不同的补贴计划,如 IRA(3700 亿美元)和欧盟绿色协议(1 万亿欧元),正在支持发展低温室气体至零温室气体技术的制造能力。同样的原则也适用于大西洋两岸的国防工业。这些资金背后的理念不仅是加速制造能力的发展,而且还要减少对外国关键部件的依赖——代表“大棒”的一面。这意味着,为了获得补贴,制造公司需要仔细选择供应商的来源。美国目前正在讨论的《生物安全法》也朝着同样的方向发展,如果一家公司使用“令人担忧”的生物技术公司的设备或服务,联邦贷款和与美国政府的合同将被禁止。
●浪费:不使用●代表性数据?●并非总是直接直接(参见,例如,Tayal等人逆问题,深度学习和对称性破坏。https://arxiv.org/abs/2003.09077)
摘要:神经营销提供了有关传统营销测试方法无法提供的消费者决策的见解。决策过程中的基础是P300。因此,p300波是用于测量消费者决策过程的潜在与事件相关的组件(ERP)。p300波代表人类事件相关电位的正转换。因此,p300是通过测量消费者的幅度和潜伏期来确定的。较高的p300振幅表明对决策过程的信心更大,而较长的P300潜伏期表示较低的注意力。因此,神经科学中的P300无法通过典型的营销方法来完成,该神经科学研究了客户的回答。多年来,P300组件(例如态度,偏好和基于信息的决策)在与营销相关的研究中得到了广泛的研究。但是,对神经营销方法中的ERP进行了综述。此迷你审查描述了一些研究人员对P300和决策的一些分析。关键字:神经市场; P300振幅;营销;决策; ©2021 Mansor等人。根据创意共享归因(CC BY-NC 4.0)许可(https://creativecommons.org/licenses/by-nc/4.0/)使用和分发,只要在任何媒介中,任何媒介中允许不受限制的非商业用途,分发和复制,前提是原始作者和来源的介绍。为了实现这些目标,神经营销商使用广泛的神经营销技术和技术来衡量神经系统的大脑活动。1.0简介神经营销是一个研究领域,该研究领域结合了神经科学原则和传统的营销研究思想,以评估客户的决策过程如何响应营销刺激。神经营销采用认知行为活动来了解消费者的潜意识,解释消费者的偏好,动机和期望,并预测消费者的行为(Bercea,2011; Colaferro&Crescitelli,2014;Dapkevičiusius&Melnikas&Melnikas&Melnikas,2009; Fugugate,2007; 2007年)。例如,神经营销工具,例如功能磁共振成像(fMRI),
事件相机具有高时间分辨率、高动态范围、低功耗和高像素带宽等特点,为特殊环境中的物体检测提供了独特的功能。尽管有这些优势,事件数据固有的稀疏性和异步性对现有的物体检测算法提出了挑战。脉冲神经网络 (SNN) 受到人脑编码和处理信息方式的启发,为这些困难提供了潜在的解决方案。然而,在当前的实现中,它们在使用事件相机进行物体检测方面的性能受到限制。在本文中,我们提出了脉冲融合物体检测器 (SFOD),一种基于 SNN 的简单有效的物体检测方法。具体而言,我们设计了一个脉冲融合模块,首次实现了应用于事件相机的 SNN 中不同尺度特征图的融合。此外,通过整合我们在 NCAR 数据集上对主干网络进行预训练期间进行的分析和实验,我们深入研究了脉冲解码策略和损失函数对模型性能的影响。从而,我们建立了基于 SNN 的当前最佳分类结果,在 NCAR 数据集上实现了 93.7% 的准确率。在 GEN1 检测数据集上的实验结果表明,SFOD 实现了 32.1% 的当前最佳 mAP,优于现有的基于 SNN 的方法。我们的研究不仅强调了 SNN 在事件摄像机物体检测中的潜力,而且推动了 SNN 的发展。代码可在 https://github.com/yimeng-fan/SFOD 获得。
1四川医学科学院和四川省人民医院,中国电子科学技术学院医学院,中国成都,2个个性化药物治疗四川省医学院,医学院,中国医学院,医学院3个个性化药物疗法四川医学科学学院和四川省人民医院,中国电子科学与技术大学医学院,成都,中国,成都5神经科学系,成都锡希迪学校,成济族尚格学校,中国成都,6 6号药学院,6次中国医学,临床医学,临床医学,临时性医学,四川医学学院和四川省人民医院,成都,四川,中国
摩根士丹利目前正寻求与摩根士丹利研究报告中涉及的公司开展业务。因此,投资者应注意,该公司可能存在利益冲突,这可能会影响摩根士丹利研究的客观性。投资者应将摩根士丹利研究视为做出投资决策的唯一因素。有关分析师认证和其他重要披露,请参阅本报告末尾的披露部分。+= 非美国关联公司雇用的分析师未在 FINRA 注册,可能不是该成员的相关人员,并且可能不受 FINRA 对与目标公司通信、公开露面和研究分析师账户持有的交易证券的限制。