Vilčáková,博士3 IgA/CPS/2024/003自然和合成聚合物的环境合并研究。 SimonaUhercová教授。 ing。 vladimírSedlaêhík,博士4 IgA/CPS/2024/005评估和转化为医疗保健和Mainak Chaudhuri的清洁能源和材料,M.Sc。 文档。 M.Sc. Nabanita Saha博士5 IgA/CPS/2024/006聚合物系统的流变特性作为开发的工具。 ondewejmertlík文档。 。 TomášSedláček博士6 IgA/CPS/2024/007设计用于组织工程的智能生物材料。 KristýnaValášková文档。 。 ZdenkaVíchová,博士7 IgA/CPS/2024/008双电磁和磁反应流体MGR。 Lenka Munteanu教授。 ing。 MichalSedlačík博士7 37/6Vilčáková,博士3 IgA/CPS/2024/003自然和合成聚合物的环境合并研究。SimonaUhercová教授。 ing。vladimírSedlaêhík,博士4 IgA/CPS/2024/005评估和转化为医疗保健和Mainak Chaudhuri的清洁能源和材料,M.Sc。文档。M.Sc. Nabanita Saha博士5 IgA/CPS/2024/006聚合物系统的流变特性作为开发的工具。 ondewejmertlík文档。 。 TomášSedláček博士6 IgA/CPS/2024/007设计用于组织工程的智能生物材料。 KristýnaValášková文档。 。 ZdenkaVíchová,博士7 IgA/CPS/2024/008双电磁和磁反应流体MGR。 Lenka Munteanu教授。 ing。 MichalSedlačík博士7 37/6M.Sc.Nabanita Saha博士5 IgA/CPS/2024/006聚合物系统的流变特性作为开发的工具。 ondewejmertlík文档。 。 TomášSedláček博士6 IgA/CPS/2024/007设计用于组织工程的智能生物材料。 KristýnaValášková文档。 。 ZdenkaVíchová,博士7 IgA/CPS/2024/008双电磁和磁反应流体MGR。 Lenka Munteanu教授。 ing。 MichalSedlačík博士7 37/6Nabanita Saha博士5 IgA/CPS/2024/006聚合物系统的流变特性作为开发的工具。ondewejmertlík文档。。TomášSedláček博士6 IgA/CPS/2024/007设计用于组织工程的智能生物材料。 KristýnaValášková文档。 。 ZdenkaVíchová,博士7 IgA/CPS/2024/008双电磁和磁反应流体MGR。 Lenka Munteanu教授。 ing。 MichalSedlačík博士7 37/6TomášSedláček博士6 IgA/CPS/2024/007设计用于组织工程的智能生物材料。KristýnaValášková文档。。ZdenkaVíchová,博士7 IgA/CPS/2024/008双电磁和磁反应流体MGR。 Lenka Munteanu教授。 ing。 MichalSedlačík博士7 37/6ZdenkaVíchová,博士7 IgA/CPS/2024/008双电磁和磁反应流体MGR。Lenka Munteanu教授。 ing。MichalSedlačík博士7 37/6MichalSedlačík博士7 37/6
国际科学与实践会议“2022年消防安全问题”(“Fire Safety Issues 2022”)的材料。 - Kh.:乌克兰国家科学院,2022 年。 - 410 页。组委会:组委会主席Sadkovy Volodymyr - 乌克兰国立大学校长、公共管理博士、乌克兰国立民防大学(哈尔科夫)教授。委员会副主席安德罗诺夫·弗拉基米尔 - 乌克兰国家科学研究中心副主任 - 研究中心主任,技术科学博士,乌克兰国立民防大学(哈尔科夫)教授。委员会成员 Yuriy Klyuchka - 乌克兰国家教育和方法工作中心副校长、技术科学博士、乌克兰国立民防大学(哈尔科夫)高级研究员。安德烈·罗明 - 乌克兰国家民防中心消防安全部门负责人,公共管理博士,乌克兰国立民防大学(哈尔科夫)教授。 Mykola Udyanskyi - 乌克兰国立民防大学(哈尔科夫)民防学院院长、技术科学副博士、副教授。 Ponomarenko Roman - 乌克兰国立民防大学(哈尔科夫)作战救援部队系主任、技术科学博士、教授。 Oleksandr Metielov - 乌克兰国立民防大学(哈尔科夫)技术与环境安全学院院长、技术科学副博士、副教授。 Tünde Anna Kovács - 工程学院副教授
由于由抗真菌抗药性抗药性菌株引起的新兴生命威胁性真菌感染,因此迫切需要制定新的治疗策略,应用抗真菌化合物,这些化合物与化学特征和作用机理中的现有抗真菌化合物不同(Kainz等,2020)。除了针对真菌细胞壁的新型化学疗法,细胞膜和细胞内靶标(Rauseo等,2020),天然和合成抗真菌肽(Fern Andez de Ullivarri等,2020)和蛋白质(AFPS)和蛋白质(AFPS)代表其他药物候选者;其中,丝状真菌起源的Neosartorya(Aspergillus)Fischeri抗真菌蛋白2(NFAP2)(Galg Oczy等,2019)。nFAP2抑制了机会性人类病原体念珠菌物种的生长,并单独消除其耐药性生物膜或与许可的抗真菌药物的协同组合(Kov Acs等,2021; T oth等,2018)。NAFP2在鼠外阴阴道念珠菌模型中的实验确定的功效(Kov ACS等,2019),以及三维人类皮肤模型(Holzknecht等,2022)已经支持其在安全治疗中的治疗潜力(抗真菌药物抗药性)表Lastric Fungal Infections。考虑到这些功能,NFAP2被认为是有希望的
逐步的能力和脉搏分析-Dean奖Matejnovák2。用于多渗透学检查的高级PPG多镜检查DianaVíťazková,TomášZávodník,KrisztianGašparek,HelenaKosnáčová,ErikVavrinský,HelenaKosnáčová Kosnáčová,DianaViťazková,TomášZávodník,PatrikBartoš,MartinKasznár和ErikVavrinský4。尼奥薄膜的实验研究电化学分析-IEEE MICHAL PIFKO,MARIánMarton和Marian Vojs奖6。基于Gan -ieee MatejMatuš和ľubicaStuchlíková奖的渐进结构的电气表征7。
•Liaskoni,M.,Huszár,P.,Bartík,L.,Prieto Perez,A。P.,Karlický,J。和郡K。:生物挥发性有机体化合物对中国欧洲冰分型对欧洲城市臭氧模式的长期影响。化学。Phys。,24,13541–13569,https://doi.org/10.5194/acp-24-13541-2024,2024。•Bartík,L.,Huszár,P.,Karlický,J.,Vlček,O。和Eben,K。:建模中欧PM污染的驱动因素:来自不同来源的排放的影响和贡献,来自不同来源的Attos,Attos。化学。phys。,24,4347–4387,https://doi.org/10.5194/acp-24-4347-2024,2024,2024•Karlický,J.,Rieder,Rieder,Huszár,Huszár,P.空气中的区域臭氧负担。Qual。Atmos。健康,https://doi.org/10.1007/s11869-024-01516-3,2024。•Belda,M.,Benešová,N.,Resler,J.,Huszár,P.,Vlček,O.模型开发,17,3867–3878,https://doi.org/10.5194/gmd- 17-3867-2024,2024。•Huszar,P。,Prieto Perez,A。P.,Bartík,L.,Karlický,J。和Villalba-Pradas,A。:城市化对中欧颗粒物浓度的影响,Atmos。化学。Phys。,24,397–425,https://doi.org/10.5194/acp-24-397-2024,2024。•Liaskoni,M.,Huszar,p。,Bartík,L.,Prieto Perez,A。P.,Karlický,J。和Vlček,O。:建模建模欧洲风吹出的灰尘排放及其对颗粒物(PM)浓度的影响,Atmos,Atmos。化学。Phys。,23,3629–3654,https://doi.org/10.5194/acp-23-3629-2023,2023。•Huszar,P.,Karlický,J.,Bartík,L.,Liaskoni,M.,Prieto Perez,A。P.和K。j. fancte:城市化对气相污染物浓度的影响:贡献的区域尺度,基于贡献因素的区域范围,基于贡献因素的模型分析。化学。Phys。,22,12647–12674,https://doi.org/10.5194/acp-22-12647-2022,2022。•Sindelarova,K.,Markova,J.,Simpson,D.,Huszar,P.,Karlicky,J.,Darras,S。和Granier,C。:高分辨率2000- 2019年的高分辨率生物源全球排放清单,用于空气质量模型,地球Syst。SCI。 数据,14,251–270,https://doi.org/10.5194/essd-14-251-2022,2022。 •Huszar,P.,Karlický,J.,Marková,J.,Nováková,T.,Liaskoni,M。和Bartík,L。:城市排放对欧洲空气质量的区域影响:城市顶篷的作用:城市顶篷的作用,Atmos,Atmos,Atmos。 化学。 Phys。,21,14309–14332,https://doi.org/10.5194/acp-21-14309-2021,2021。 •Resler,J.,Eben,K.,Geletič,J.,Krč,P.,Rosecký,M.,Sühring,M.,Belda,M.,Fuka,V.,Halenka,T.,T.,Huszár,p。 Nápravníková,š。和O。的Vlček:在真正的城市环境中对棕榈模型系统6.0的验证:捷克共和国布拉格的Dejvice的案例研究,Geosci。 模型开发,14,4797–4842,https://doi.org/10.5194/gmd-14-4797-2021,2021。 •Musiolková,M.,Huszár,P。,Navrátil,M。和špunda,V。:季节,云覆盖物和空气污染对紫外线不同光谱区域的影响以及表面上可见的太阳辐射。 res。 化学。SCI。数据,14,251–270,https://doi.org/10.5194/essd-14-251-2022,2022。•Huszar,P.,Karlický,J.,Marková,J.,Nováková,T.,Liaskoni,M。和Bartík,L。:城市排放对欧洲空气质量的区域影响:城市顶篷的作用:城市顶篷的作用,Atmos,Atmos,Atmos。化学。Phys。,21,14309–14332,https://doi.org/10.5194/acp-21-14309-2021,2021。•Resler,J.,Eben,K.,Geletič,J.,Krč,P.,Rosecký,M.,Sühring,M.,Belda,M.,Fuka,V.,Halenka,T.,T.,Huszár,p。 Nápravníková,š。和O。的Vlček:在真正的城市环境中对棕榈模型系统6.0的验证:捷克共和国布拉格的Dejvice的案例研究,Geosci。模型开发,14,4797–4842,https://doi.org/10.5194/gmd-14-4797-2021,2021。•Musiolková,M.,Huszár,P。,Navrátil,M。和špunda,V。:季节,云覆盖物和空气污染对紫外线不同光谱区域的影响以及表面上可见的太阳辐射。res。化学。Q J r Meteorol Soc,1-16,2021,https://doi.org/10.1002/qj.4102•Pisoft,P.,Sacha,P.,Polvani,L.M.A.,de la Torre,L.,Eichinger,R.,Foelsche,U.,Huszar,P.,Jacobi,Ch。Lett。,16,064038,2021。•Karlický,J.,Huszár,P.,Nováková,T.,Belda,M.,švábik,F.,Doubalová,J。和Hall,T。:“城市气象学岛”:一个多模型的合奏分析,Atmos,Atmos。Phys。,20,15061–15077,https://doi.org/10.5194/acp-20-15061-2020,2020,2020。•Huszar,P.,Karlický,J.,ubalová,J.,Nováková,T.化学。Phys。,20,11655–11681,https://doi.org/10.5194/acp-20-11655-2020,2020。•J。Doubalová; Huszar,p。 Eben,K。; Benesova,N。; Belda,M。; O。Vlček; Karlicky,J。; Geletič,J。;上衣,T。:urbi pragensi项目中对布拉格的高分辨率空气质量预测:冬季的模型性能以及城市参数化对PM,大气,11、625、2020的影响。
Murukarthick Jayakodi 1,26,Agnieszka A. Golicz 2,26,Jonathan Kreplak 3,26,Lavinia I. Fechete 4,Deepti Angra 5,PetrBedná病6,Elesandro Bornhofen 7 Heidrun Gundlach 10,Asis Hallab 11,12,Baptiste Imbert 3,Gabriel Keeble-Gagnère8,AndreaKoblížková13,LucieKobrlová14,PetraKrejčí6,Troels W. Mouritzen 4,Povel nove nove nove Noves Noves Nove Nove Noves Nave nave nave nave nave nave ,圣战奥拉比16,苏达尔·帕德玛拉苏1,汤姆·罗伯逊·希尔斯比 - 哈维5,劳拉·阿维拉·罗布雷洛13,安德里亚·史曼16,贾克科·坦斯科宁17,彼得里·托恩,佩特里·托恩, Uel Courty 3,JaroslavDoležel9,Liisa U. Holm 18,Luc L. Janss 7,Hamid Khazaei 17,Ji场ÖrnUsadel 11,25,Ingo Schubert 1,Donal Martin O'Sullivan 5✉,Alan H. Schulman 17,18,23✉&StigUggerhøjAndersen 4✉
Emil Nikolov (BG) PC 副主席 Todor Ionkov (BG) PC 成员 Petko Petkov (BG) Snejana Terzieva (BG) Snejana Yordanova (BG) Hassane Abouaïssa (FR) Valeri Mladenov (BG) Daniel Jolly (FR)埃米尔·加里波夫 (BG) Gilles Gonçalves (法国) Plamen Tzvetkov (BG) 伊万·卡拉科夫 (SE) Jivko Georgiev (BG) 尼古拉·克里斯托夫 (FR) 米霍·米霍夫(BG) Alena Kozáková (SK) Vasil Galabov (BG) Danica Rosinová (SK)
András Pál 1, Masanori Ohno 2, László Mészáros 1, Norbert Werner 3, Jakub ˇ Rípa 3, Balázs Csák 1, Marianna Dafˇcíková 3, Marcel Frajt 4, Yasushi Fukazawa 2, Peter Hanák 5, Ján Hudec 4, Nikola Husáriková 3, Martin Kolács 3, Martin Koleda 7, Robert Laszlo 7, Pavol Lipovský 5, Tsunefumi Mizuno 2, Filip Münz 3, Kazuhiro Nakazawa 8, Maksim Rezenov 4, Miroslav Šmelko 9, Hirromitsu Takahashi 2, Martin Topinka Jean-Paul Breuer 3,TamásBozóki11,Gergely Dale 12,Teruaki Enoto 13,Zsolt Frei 14,Gergely Fresh 14,GáborGalgóczi14.15 14.15,Filip Hroch 3,Yuto Ichinohe 16,Yuto Ichinohe 16,Kornélkapás17,18,15,15,15,15,15,15,15,15,15,15 你好。 Poon 2,AlešPovalaEvenc 6,Johnakátsy14.15,Kento Torigoe 2,Nagomi Uchida 20和Yuusuke Uchida 21András Pál 1, Masanori Ohno 2, László Mészáros 1, Norbert Werner 3, Jakub ˇ Rípa 3, Balázs Csák 1, Marianna Dafˇcíková 3, Marcel Frajt 4, Yasushi Fukazawa 2, Peter Hanák 5, Ján Hudec 4, Nikola Husáriková 3, Martin Kolács 3, Martin Koleda 7, Robert Laszlo 7, Pavol Lipovský 5, Tsunefumi Mizuno 2, Filip Münz 3, Kazuhiro Nakazawa 8, Maksim Rezenov 4, Miroslav Šmelko 9, Hirromitsu Takahashi 2, Martin Topinka Jean-Paul Breuer 3,TamásBozóki11,Gergely Dale 12,Teruaki Enoto 13,Zsolt Frei 14,Gergely Fresh 14,GáborGalgóczi14.15 14.15,Filip Hroch 3,Yuto Ichinohe 16,Yuto Ichinohe 16,Kornélkapás17,18,15,15,15,15,15,15,15,15,15,15 你好。 Poon 2,AlešPovalaEvenc 6,Johnakátsy14.15,Kento Torigoe 2,Nagomi Uchida 20和Yuusuke Uchida 21
最近,在发现高温超导体后,人们对建模超导体的性质引起了极大的兴趣。在理论上是由微观BCS理论的平均[2]从理论上推导的一种流行的宏观模型[1],Ginzburg和Landau [3]在其现象学方法中首先引入了接近过渡温度的现象学方法。与时间相关的Ginzburg – Landau(TDGL)模型是由Gor'kov和Eliashberg [4]推导出的,从微观BCS理论中,后来由许多作者研究了该模型。有关超导性的显微镜和宏观理论的更多物理背景,我们指的是最近的调查文章[5,6]及其参考文献。超导层分层化合物是材料,其中过渡金属二核苷的金属单层固有地堆叠(固有层化合物),或者在上述金属层之间将有机分子插入(相互量化的层化合物)。此类金属层的一些示例是TAS#,Tase#,NBS#,NBSE#等等。在本文中,我们将考虑劳伦斯– donioch(LD)模型[7],其中约瑟夫森隧道与相邻层中的金兹堡 - 陆订单参数相结合。有关LD模型的更多信息,我们还参考了参考文献[8-10]及其中的参考。在本文中,我们首先描述了§2中的固定LD模型,并证明了存在结果。然后,在第3节中,我们介绍了时间依赖的劳伦斯– Donioch(TDLD)模型,并显示了TDLD模型强解决方案的存在和独特性。在§4中,我们显示了本文的主要结果,即TDGL模型是TDLD模型的极限
“我们在布尔诺的工厂是我们致力于迅速扩大全球能力来满足过渡到清洁能源产生的加速需求的一个例子。CTPARK BRNO中的这个项目将为我们提供理想的生产我们的经济效率Econiq投资组合的背景,该产品消除了从高压设备中消除使用硫磺六氟化物(SF6)的使用,这是最有效的温室气体。我们投资超过11亿个CZK将提高生产能力,并满足对可持续能源解决方案的不断增长的需求。