其他贡献来自NiccolòHurst和Carlo Starace。Marina Dos Santos和Eleni Tsoukala提供了基本的支持。
上下文。cometary子流线小径存在于彗星附近,形成了星际尘埃云的细胞结构。这些步道主要由最大的彗星颗粒组成(大小约为0.1 mm – 1 cm),它们以低速弹出,并保持非常接近彗星轨道,以围绕太阳的几次旋转。在1970年代,向内部太阳系推出了两个Helios航天器。航天器配备了原位灰尘传感器,该传感器第一次测量了内部太阳系中星际尘埃的分布。最近,当重新分析HELIOS数据时,发现了七个影响的聚类,由Helios在非常狭窄的空间区域中检测到,真正的异常角度为135±1°,作者认为这是潜在的cometary Trail颗粒。但是,当时无法进一步研究该假设。目标。我们在Helios Dust Data中重新分析了这些候选彗星径向粒子,以调查某些或全部确实起源于彗星步道的可能性,并且我们限制了它们的源彗星。方法。空间模型中用于探索的星际探索(IMEX)尘埃流是一种新的且最近发布的通用模型,用于内部太阳系中的彗星气星流。我们使用IMEX研究Helios制作的彗星径的遍历。结果。在太阳周围的十革命中,Helios航天器与13条彗星小径相交。在大多数遍历中,预测的灰尘频量非常低。结论。在Helios检测到候选粉尘颗粒的狭窄空间区域中,航天器反复穿越45p/Honda-Mrkos-Pajdušáková彗星的步道,并具有72p/Denning-fujikawa,具有相对较高的预测粉尘。对检测时间和粒子冲击方向的分析表明,四个检测到的粒子与这两个彗星的来源兼容。通过组合测量和模拟,我们在这些小径中发现了尘埃空间密度,约为10-8 –10-7 m -3。在较狭窄的空间区域中,径向遍历的聚类构成了Helios数据中潜在的彗星径向颗粒的识别。基于航天器的尘埃分析仪可以将其追溯到其源体的现场检测和分析,为对彗星和小行星的远程组成分析提供了一个新的机会,而无需将航天器吹入甚至降落在这些天体上。这为命运 +(例如,与Phaethon Flyby and Dust Science的空间技术的示范和实验),Europa Clipper以及星际映射和加速探针提供了新的科学机会。
慢性心力衰竭(CHSS)的治疗始终很复杂,包括药理和非药理学程序。在许多患者中,心力衰竭发展为晚期心力衰竭阶段,尽管治疗最大,但其特征是症状症状的阴茎。 The basis of treatment with heart failure with reduced ejection fraction (hfref) are the following pillars of the drug groups: inhibitors of angiotensin converting enzyme (ACEI)), dual receptor inhibitor 1 for angiotensin II and non -pilly (Arni), beta -blockers (BB) (MRA) and inhibitors of sodium-glucose counter-marker 2 (SGLT2,Gliflozins),它们具有来自大型随机诊所研究的致命数据。 建议将及时部署和快速摄入对最大耐受剂量。 此外,无论射血分数的价值如何, sglt2i均适用于所有心力衰竭的患者,现在建议用于治疗弹出率略有减少(HFMREF)和保留的射血分数(HFPEF)的心力衰竭患者。 也很重要的是要治疗co症状,尤其是贫血的治疗,在贫血的治疗中,其公司的位置已经静脉注射铁(FCM)。 糖尿病患者II。 类型和慢性肾脏疾病可以受益于预烯酮治疗。 建议患有遗传证明的遗传性遗传性肌动蛋白淀粉样蛋白病和野生型以心脏转换淀粉样蛋白淀粉样变性的形式进行。在许多患者中,心力衰竭发展为晚期心力衰竭阶段,尽管治疗最大,但其特征是症状症状的阴茎。The basis of treatment with heart failure with reduced ejection fraction (hfref) are the following pillars of the drug groups: inhibitors of angiotensin converting enzyme (ACEI)), dual receptor inhibitor 1 for angiotensin II and non -pilly (Arni), beta -blockers (BB) (MRA) and inhibitors of sodium-glucose counter-marker 2 (SGLT2,Gliflozins),它们具有来自大型随机诊所研究的致命数据。及时部署和快速摄入对最大耐受剂量。sglt2i均适用于所有心力衰竭的患者,现在建议用于治疗弹出率略有减少(HFMREF)和保留的射血分数(HFPEF)的心力衰竭患者。也很重要的是要治疗co症状,尤其是贫血的治疗,在贫血的治疗中,其公司的位置已经静脉注射铁(FCM)。糖尿病患者II。 类型和慢性肾脏疾病可以受益于预烯酮治疗。 建议患有遗传证明的遗传性遗传性肌动蛋白淀粉样蛋白病和野生型以心脏转换淀粉样蛋白淀粉样变性的形式进行。糖尿病患者II。类型和慢性肾脏疾病可以受益于预烯酮治疗。建议患有遗传证明的遗传性遗传性肌动蛋白淀粉样蛋白病和野生型以心脏转换淀粉样蛋白淀粉样变性的形式进行。。
是公开的。然后党A选择私人a∈Z,而党B选择私人b∈Z。party a通信g a,b发送g b,常见的秘密是(g b)a = g ab =(g a)b。第三方C可以访问N,G,G A和G B,但是从已知数据中找到G AB很困难,只要P -1在其因素中包含很大的素数。有很多想法,并且有广泛的文献来构建来自非交通性群体和单体的加密协议(Monoids gen-gen-generallents of consemains of of toce of ofers of of ofers ofers of ofers of ofers ofers of ofers of ofers ofers of ofers ofers of ofers ofers of ofers of ofers of ofers ofers ofers of ofers ofers of ofers ofers of ofers of ofers of of tosepsss,我们从现在开始说),请参见例如。[msu08],[msu11]及其中的参考。此类示例是Magyarik – Wagner公共密钥协议[WM85],Anshel – Anshel – Goldfeld密钥交换[AAG99],KO – Lee等。密钥交换协议[KLC + 00]和shpilrain – zapata公共密钥协议[SZ06]。在文献中,协议中使用的单体s通常称为平台组/单体。在[MR15,第4节]中有大量各种协议和平台单体列表,包括但不限于上述列表。有时这些限制在组或基质组中,有时可以使用一般的单体。本文的一个典型示例是Shpilrain -Ishakov(SU)密钥交换协议,例如[MSU08,第4.2.1节],其工作如下。公共数据是一个单体s,两个集合的通勤元素和g∈S的a,b。party a选择私人a,a'∈A,而party b选择私人b,b'∈A。party a通信Aga',B发送BGB',常见的秘密是ABGB'a'= baga'b'。不使用通勤元素的另一个示例是Stickel的秘密钥匙交换(ST)[ST05]。g,h∈S带有gh̸= hg是公开的,party a pick a,a'∈Z≥0,p partion b picks a,a'∈Z≥0,a发送g a h a',b sends g a h a',b sends g b h b b',常见的秘密是g a g b b b b b b b b b b b'h a'''= g b g a a h a h a h a h a h h a'''。 请注意,在这些协议中,S可以是任意的单体。 S的复杂性决定了从公共数据中找到共同秘密的困难。 如Myasnikov和Roman'kov [MR15]所示,也基于早期的作品,SU和ST协议以及其他精神,上面包括的两个段落,如果S承认S小型非平地代表,则可以成功地受到攻击。 简称这称为线性分解攻击或线性攻击。 线性攻击的后果之一是,有限的非交通性群体可能不适合加密目的,因为它们承认了中等大小的非平凡代表。 在玩具示例中,对称组S N具有N! 元素,但承认忠实的(n-1)维度表示。 该代表的维度在组的大小上小于对数,而对称组对于各种标准非交通性组协议来说将是一个糟糕的选择。 同样,有限的简单谎言类型组通常会接受(通常)与大小相比的(通常)小维度的表示。 少数例外,包括与经典和宽容的协议有关的主要阶阶循环群,对于其他有限的简单组也是如此。g,h∈S带有gh̸= hg是公开的,party a pick a,a'∈Z≥0,p partion b picks a,a'∈Z≥0,a发送g a h a',b sends g a h a',b sends g b h b b',常见的秘密是g a g b b b b b b b b b b b'h a'''= g b g a a h a h a h a h a h h a'''。请注意,在这些协议中,S可以是任意的单体。S的复杂性决定了从公共数据中找到共同秘密的困难。如Myasnikov和Roman'kov [MR15]所示,也基于早期的作品,SU和ST协议以及其他精神,上面包括的两个段落,如果S承认S小型非平地代表,则可以成功地受到攻击。简称这称为线性分解攻击或线性攻击。线性攻击的后果之一是,有限的非交通性群体可能不适合加密目的,因为它们承认了中等大小的非平凡代表。在玩具示例中,对称组S N具有N!元素,但承认忠实的(n-1)维度表示。该代表的维度在组的大小上小于对数,而对称组对于各种标准非交通性组协议来说将是一个糟糕的选择。同样,有限的简单谎言类型组通常会接受(通常)与大小相比的(通常)小维度的表示。少数例外,包括与经典和宽容的协议有关的主要阶阶循环群,对于其他有限的简单组也是如此。也就是说,这些群体相对于它们的顺序承认了小维度的非平凡表示。因为任何有限的G级别都可以在某些有限的简单组上,从而减少了问题
脊髓损伤(SCI)是一项巨大的公共卫生挑战,全世界数百万个人,通常导致令人衰弱的感觉运动障碍,这显着损害了生活质量。SCI的复杂性是多方面的,不仅涉及对脊髓的直接物理创伤,而且还涉及一系列生物反应的级联,这些反应会使损伤永存并抑制恢复(Cardile等,2024)。在与SCI病理生理学有关的各种生物学机制中,氧化应激,其特征在于活性氧(ROS)产生和抗氧化剂防御之间存在不平衡,已成为加剧神经损害和阻碍恢复的关键因素(Jia等人,2012; disavadiya et al an al and and and and and and and and and and and and and and and and and and and and an al an al an al an al an al an al an al al an al an al an al an al al an al an al an al an al visavadiya等。一氧化氮(NO)是在氧化应激过程中产生的重要反应性氮种(Ozcan和Ogun,2015)。SCI之后,NO的产生增加,这有助于血管舒张。然而,这也没有硝基化的鼻型途径,导致过氧亚硝酸盐的形成,以及各种细胞信号通讯,以及对神经元,脂质和DNA的氧化损伤,这可能会进一步加剧神经元损害(Conti等,2007,2007; Xiong et al。谷胱甘肽(GSH)是清除ROS的关键非酶促抗氧化剂,有助于维持氧化还原平衡。它以两种形式存在:减少(GSH)和氧化(GSSG)。另一方面,过氧化氢酶是一种将过氧化氢(H 2 O 2)催化为水和氧的酶。我们以前已经表征了上述该反应对于缓解氧化应激至关重要(Brunelli等,2001;Vašková等,2023)。SCI后,多余的ROS会耗尽GSH和压倒性过氧化氢酶,从而导致氧化应激增加(Jia等,2012)。当前的SCI治疗选择是有限的,尽管手术技术和康复疗法的进步,但缺乏有效和FDA批准的药理学干预措施仍然是一个紧迫的挑战。现有的药物治疗通常与不良的副作用有关,这强调了迫切需要创新的治疗策略(Cristante等,2012)。一个有希望的研究领域的重点是使用以神经保护特性而闻名的天然化合物。Rosa Canina L. [R. canina)(R. canina),也称为狗玫瑰,是丰富的生物活性化合物来源,包括寡糖,这些化合物以其抗氧化剂和抗渗透性效应而闻名(Taneva等,2016)。最近的研究表明,源自各种植物来源的寡糖在调节氧化应激和促进神经元健康方面起着至关重要的作用(Vieira等,2020; Kang等,2022)。鉴于氧化应激在SCI进展中的作用,canina犬寡糖作为潜在的治疗剂的探索似乎是有效的。
therapy as strategy to face post-antibiotic era: a guide to beginners and experts.Archives of Microbiology , 2021, 203(4): 1271‒1279.[5] Zrelovs N, Dislers A, Kazaks A. Motley crew: overview of the currently available phage diversity.Frontiers in Microbiology , 2020, 11: 579452.[6] 张永雨 , 黄春晓 , 杨军 , 焦念志 .海洋微生物与噬菌 体间的相互关系 .科学通报 , 2011, 56(14): 1071‒1079.Zhang YU, Huang CX, Yang J, Jiao NZ.Interactions between marine microorganisms and their phages.Chinese Science Bulletin , 2011, 56(14): 1071‒1079.(in Chinese) [7] Olszak T, Latka A, Roszniowski B, Valvano MA, Drulis-Kawa Z. Phage life cycles behind bacterial biodiversity.Current Medicinal Chemistry , 2017, 24(36): 3987‒4001.[8] Nobrega FL, Vlot M, De Jonge PA, Dreesens LL, Beaumont HJE, Lavigne R, Dutilh BE, Brouns SJJ.Targeting mechanisms of tailed bacteriophages.Nature Reviews Microbiology , 2018, 16(12): 760‒773.[9] King AM, Lefkowitz E, Adams MJ, Carstens EB.Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses.St Louis: Elsevier , 2011.[10] Hrebík D, Štveráková D, Škubník K, Füzik T, Pantůček R, Plevka P. Structure and genome ejection mechanism of Staphylococcus aureus phage P68.Science Advances , 2019, 5(10): eaaw7414.[11] Letarov AV, Kulikov EE.Adsorption of bacteriophages on bacterial cells.Biochemistry Biokhimiia , 2017, 82(13): 1632‒1658.[12] Knirel YA, Valvano MA.Vienna: Springer-Verlag , 2011.[13] Casjens SR, Molineux IJ.细菌脂多糖:结构,化学合成,生物发生和与宿主细胞的相互作用。短的非收集尾巴机:podoviruses的吸附和DNA递送。病毒分子机器,2012:143-179。[14] Latka A,Leiman PG,Drulis-Kawa Z,BriersY。在克雷伯氏菌噬菌体中建模含有解聚酶的受体结合蛋白的结构。微生物学的前沿,2019,10:2649。[15] Brown L,Wolf JM,Prados-Rosales R,Casadevall A.通过墙壁:革兰氏阳性细菌,分枝杆菌和真菌中的细胞外囊泡。自然评论微生物学,2015,13(10):620-630。
Julia Kempines 1 | Jonas J. Lembright 2 |计数van merbek 3 | Jofre Carnicer 4 | Nathie Isabelly Chardon 5 | Paul Kadol 6 | Jonathan Lenoir 7 | Dakun Liu 8 | Ilya MacLean 9 | Jan Pergl 10 |帕特里克·萨科尼11 | Rebecca A.Julia Kempines 1 | Jonas J. Lembright 2 |计数van merbek 3 | Jofre Carnicer 4 | Nathie Isabelly Chardon 5 | Paul Kadol 6 | Jonathan Lenoir 7 | Dakun Liu 8 | Ilya MacLean 9 | Jan Pergl 10 |帕特里克·萨科尼11 | Rebecca A.
Julia Kempines 1 | Jonas J. Lembright 2 |计数van merbek 3 | Jofre Carnicer 4 | Nathie Isabelly Chardon 5 | Paul Kadol 6 | Jonathan Lenoir 7 | Dakun Liu 8 | Ilya MacLean 9 | Jan Pergl 10 |帕特里克·萨科尼11 | Rebecca A.Julia Kempines 1 | Jonas J. Lembright 2 |计数van merbek 3 | Jofre Carnicer 4 | Nathie Isabelly Chardon 5 | Paul Kadol 6 | Jonathan Lenoir 7 | Dakun Liu 8 | Ilya MacLean 9 | Jan Pergl 10 |帕特里克·萨科尼11 | Rebecca A.
该药物会接受进一步的监测。这将允许快速获取新的安全信息。我们要求医疗保健专业人员报告任何副作用的怀疑。副作用报告的详细信息请参阅第4.8节。1。sotyktu 6 mg透明片的名称2。定性和定量组成一层涂层片含6 mg deukravacitinib。具有一个涂层片剂已知作用的辅助物质含有44毫克的乳糖(请参阅第4.4节)。辅助物质的完整列表,请参见第6.1节。3。制药形式粉红色片剂(平板电脑)粉红色,圆形,双孔涂层平板电脑,直径为8毫米,一侧用“ BMS 895”和“ 6毫克”印刷,两条线平滑。4。临床数据4.1 SOTYKT的治疗指示指示用于治疗中度至重度局灶性牛皮癣的成年人,这些成年人是全身治疗的候选者。4.2剂量和给药方法应在医生的指导和监督下,具有牛皮癣的诊断和治疗经验。剂量建议的剂量每天口服一次6毫克。如果治疗24周后,治疗的益处未在患者中显示出来,则应考虑治疗的终结。应定期评估患者对治疗的反应。不需要年龄在65岁及以上的老年患者的特殊人群老年患者剂量调整(请参阅第5.2节)。与≥75岁患者的临床经验非常有限,并且应谨慎使用Deukravacitinib。肾脏损伤患者剂量调整的肾功能不全,包括在肾脏疾病结束时接受透析治疗的肾脏疾病(ESRD)的患者(请参阅第5.2节)。
Cyril Barbezang、Nathalie Bossuyt、Sarah Denayer、François Dufrasne、Sébastien Fierens 和 Melissa Vermeulen(比利时 Sciensano); Thomas Demuyser、Xavier Holemans、Benedicte Lissoir、Lucie Seyler、Els Van Nedervelde(比利时布鲁塞尔大学医院)、(比利时沙勒罗瓦大医院); Marieke Bleyen、Door Jouck、Koen Magerman(比利时杰萨医院)马克·布尔乔亚 (Marc Bourgeois)、本尼迪克特·德拉尔 (Benedicte Delaere)(比利时鲁汶天主教大学); Evelyn Petit、Marijke Reynders(比利时 Sint-Jan Bugge-Oostende 综合医院) Nicolas Dauby、Marc Hainaut(比利时圣皮埃尔天主教大学) Maja Ilić、Pero Ivanko、Zvjezdana Lovrić Makarić、Iva Pem Novosel、Goranka Petrović、Petra Smoljo、Irena Tabain(克罗地亚公共卫生研究所);黛安娜·诺科维奇(Diana Nonković)(克罗地亚斯普利特-达尔马提亚县公共卫生教学学院) Petr Husa、Lenka Součková(捷克布尔诺大学医院) Hana Orliková(捷克国家公共卫生研究所,NIPH)安娜·梅萨 (Anna Maisa)、伊莎贝尔·帕伦特 (Isabelle Parent)、西比勒·伯纳德-施托克林 (Sibylle Bernard-Stoecklin)(法国公共卫生部); Odile Launay、Zineb Lesieur、Liem Luong、Claire Rekacewicz、Yacine Saidi(法国 REIVAC); Silke Buda、Ralf Dürrwald、Ute Preuß、Janine Reiche、Kristin Tolksdorf、Marianne Wedde(德国罗伯特·科赫研究所); Annamaria Ferenczi、Krisztin J Horváth、Beatrix Oroszi(匈牙利塞梅维斯大学) Lisa Domegan、Róisín Duffy、Joan O’Donnell(爱尔兰卫生服务管理局健康保护监测中心); Giedre Gefenaite、Indrė Jonikaitė、Monika Kuliešė、Aukse Mickiene、Roberta Vaikutytė(立陶宛健康科学大学); Françoise Berthet、Ala'a Al Kerwi(卢森堡国家卫生局) Myriam Alexandre、Nassera Aouali、Guy Fagherazzi(卢森堡卫生研究所);马克·西蒙 (卢森堡中心医院); Maria-Louise Borg、John Paul Cauchi、Ausra Dziugyte、Tanya Melillo(马耳他卫生部); Verónica Gómez、Raquel Guiomar、Irina Kislaya、Ausenda Machado、Ana Paula Ambrosio Rodrigues(葡萄牙国立卫生研究院);米哈埃拉·拉扎尔 (Mihaela Lazar)、奥黛特·波波维奇 (Odette Popovici)(罗马尼亚坎塔库齐诺国家军事医学研究与发展研究所) Isabela Ioana Loghin(罗马尼亚雅西传染病临床医院和‘Gr. T. Popa’医药大学) Corneliu Petru Popescu(罗马尼亚布加勒斯特卡罗尔达维拉医药大学维克多巴贝斯传染病和热带病临床医院); SiVIRA 疫苗监测和有效性小组(西班牙急性呼吸道感染监测系统); Iván Martínez-Baz、Cristina Burgui、Itziar Casado Buesa、Jesús Castilla(纳瓦拉公共健康与劳动研究所 - IdiSNA - CIBERESP,西班牙)。