总结在多维空间中表现出的科学,技术,战争和军事力量之间的关系代表了一个非线性系统。从非线性创建有序系统的趋势是自然的。希望完全确定地做出决定,但实际上,这对军事系统的运营结构框架施加了风险。牢记未来应用的独特性和潜力,关于人工智能的引入将如何影响使用军事力量的变化的问题。本文定义的问题是通过分析和考虑人工智能在策略和学说的背景下的多层含义来解决的,同时遵循必要的资源。该研究基于当代政治和技术概念,考虑了政治,军事,法律和道德观点,确定了机遇,挑战和开放问题,并提供了全面的观察。假设人工智能将在不久的将来设法在不久的将来进行至少一部分自治假设,鉴于快速的技术发展,本文提供了洞察力和途径,以推动进一步的思维,研究和政策制定,以在军事中进行适当的整合,管理和使用人工智能。关键字:学说,军事,人工智能,资源,战略,技术。
摘要:本文分析了由欧盟与太空相关活动的新倡议的新推动力,该活动是由新法规(EU)2021/696或欧盟空间调节的动机。欧盟在世纪之交左右在这一领域采取了第一步,但实际上在过去十年中取得了切实的进步。尽管欧盟的太空计划与全球太空行业的其他国家的水平相当,但公众仍然在很大程度上不熟悉它。因此,本文试图通过其法律和技术方面分析该计划,以解释欧盟在当今与太空相关活动的主要领域的活动 - 沟通,对地球及其周围环境的监视以及不同的基于位置的服务。为了强调由于新法规而向每个成员国开放的机会,迄今为止,在太空行业中对克罗地亚活动的简短概述。尽管该法规是一份大量文件,但仍将某些问题打开,例如成员国对太空计划的责任,并且在本文的第三部分中进行了讨论。本文通过回答标题中提出的问题结束 - 这种新的太空政策是否真的可以将欧盟带到当今发展最快的部门之一的前端。
摘要 皮肤是人体最大的器官,环境因素与人体皮肤的相互作用会导致一些皮肤疾病,如痤疮、牛皮癣和特应性皮炎。作为人体免疫防线的第一道防线,皮肤在人体健康中发挥着重要作用,它通过阻止受皮肤微生物群影响很大的病原体入侵。尽管人体皮肤是微生物的具有挑战性的生态位,但人体皮肤上却寄生着各种共生微生物,这些微生物塑造了皮肤环境。皮肤微生物群会影响人体健康,其失衡和菌群失调会导致皮肤疾病。本综述重点介绍了我们对皮肤微生物群及其与人体皮肤相互作用的理解进展。此外,还描述了微生物群在皮肤健康和疾病中的潜在作用,并重点介绍了一些关键物种。讨论了微生物相关皮肤病的预防、诊断和治疗策略,如健康饮食、生活方式、益生菌和益生元。讨论了使用合成生物学调节皮肤微生物群的策略,作为优化皮肤-微生物群相互作用的一个有趣途径。总之,本综述提供了有关人类皮肤微生物群恢复、人类皮肤微生物群与疾病之间的相互作用以及设计/重建人类皮肤微生物群的策略的见解。关键词:皮肤、微生物群、共生微生物、合成生物学、组学技术、宿主-皮肤微生物群相互作用、皮肤疾病、痤疮
摘要新闻推荐系统(NRS)正在成为数字媒体景观中普遍存在的一部分。尤其是在政治新闻领域,NRS的采用可能会显着影响新闻分布,进而影响新闻业的工作实践和新闻消费。因此,NRS触及了政治新闻的供应和需求。近年来,对NRS的研究大大增加。然而,该领域仍在供应和需求研究的角度散布。因此,该程序研究评论的贡献是三倍。首先,我们进行了一项范围研究,以回顾有关新闻供应和用户需求方面的学术工作。第二,我们确定未置换的区域。最后,我们从政治传播的角度提出了第五个建议,以供未来的研究。
在贝尔格莱德大学物理化学学院选举委员会的III常规会议上。 div>12。 div>2024。我们为报告的候选人申请的成员和全部教授的职位 - 电化学和基本学术研究的选举主题),能量转换(主化学的选择性主题)物理化学1(环境化学和研究计划在化学学院的化学教学计划)无限期地。 div>参加比赛,出版了15。 div>1。 div>2025。在“工作”列表中,申请了一名候选人,伊瓦纳·斯托伊科维奇·辛托维奇博士,物理化学学院副教授。 div>
随机近似是一类算法,这些算法迭代,递增和随机更新,包括,例如,包括随机梯度下降和时间差学习。分析随机近似算法的一个基本挑战是建立其稳定性,即表明随机矢量迭代几乎肯定是有限的。在本文中,我们将著名的Borkar-Meyn定理从Martingale不同的噪声设定设置扩展到Markovian噪声设置,从而极大地提高了其在强化学习方面的适用性,尤其是在那些具有线性功能近似近似和资格率痕迹的O效性强化学习算法中。我们分析的核心是一些函数的变化变化速率的降低,这两种形式的强大定律和迭代对数定律的形式都暗示。关键字:随机近似,增强学习,稳定性,几乎确定的收敛性,资格跟踪
例外点(EPS)是非富特运算符和特征向量融合的非热门运营商的奇异性。由于其非炎性性质,最近已将开放量子系统作为EP测试台探索。但是,大多数研究都集中在马尔可夫的极限上,从而在理解非马克维亚政权中的EP方面存在差距。这项工作通过提出一个基于两个数值确切的非马克维亚动力学描述的通用框架来解决这一差距:运动的伪模(PMEOM)和运动层次方程(HEOM)。PMEOM由于其lindblad型结构而特别有用,与马尔可夫制度的先前研究保持一致,同时提供了对ep含量的更深入的见解。该框架通过辅助自由度结合了非马克维亚的效果,从而能够发现马尔可夫政权无法访问的其他或高阶EPS。我们使用自旋 - 玻色子模型和线性骨系统演示了这种方法的实用性。
在最初发表的文章的版本中,第一和第二个隶属关系不正确,现在已被修改为农业与生物技术学院,吉安吉大学,杭州,中国,中国,国家生物学和水稻生物学和育种国家的主要实验室,农业和农业杂交生物学杂交生物学,ZHENG CORPATIAN和RACE繁殖。中国杭州。参考。14和30,该期刊名称被错误地赋予了农作物健康杂志,现在已被修改为作物健康。 这些更正已对本文的HTML和PDF版本进行了更正。14和30,该期刊名称被错误地赋予了农作物健康杂志,现在已被修改为作物健康。这些更正已对本文的HTML和PDF版本进行了更正。
我的主要研究兴趣是在医学中实施人工智能(AI)。我目前正在研究米兰米拉诺(Politecnico di Milano)电子,计算机科学和生物工程系的研究后,以及Fondazione Irccs istituto istituto nazionale dei tumori tumori tumori di Milano的专业合作者。我的研究的主要重点是使用可解释的机器和深度学习作为肿瘤学的治疗预测。我正在与医生密切合作,以找到一种方法来实现这些预测模型的现实临床实施。我对可以帮助人们的多学科研究充满热情。体验
1 伯尔尼大学 Vetsuisse 学院 VPH 临床研究系临床免疫学组,Länggassstrasse 124, 3012 伯尔尼,瑞士;sigridur.jonsdottir@vetsuisse.unibe.ch (SJ);jelena.mirkovitch@vetsuisse.unibe.ch (JM);eliane.marti@vetsuisse.unibe.ch (EM) 2 苏黎世大学医院皮肤病学系,Wagistrasse 12, 8952 Schlieren,瑞士;victoria.fettelschoss@usz.ch (VF);florian.olomski@usz.ch (FO);tanya.rhiner@uzh.ch (TR); franziskazabel@hotmail.com (FT) 3 苏黎世大学医学院,8091 苏黎世,瑞士 4 Evax AG,Hörnlistrass 3, 9542 Münchwilen,瑞士;katharina@evax.ch 5 病毒学和免疫学研究所,Länggassstrasse 122, 3012 伯尔尼,瑞士;stephanie.talker@vetsuisse.unibe.ch 6 伯尔尼大学兽医学院传染病和病理生物学系,Länggassstrasse 122, 3012 伯尔尼,瑞士 7 康奈尔大学兽医学院人口医学和诊断科学系,纽约州伊萨卡 14853-0001,美国; bw73@cornell.edu 8 RIA 免疫学,伯尔尼大学医院,3012 伯尔尼,瑞士;Martin.Bachmann@insel.ch 9 詹纳研究所,纽菲尔德医学系,亨利·威尔科克分子生理学大楼,牛津大学,OX1 2JD 牛津,英国 10 苏黎世大学医院皮肤病学系,Gloriastrasse 31,8091 苏黎世,瑞士;Thomas.kuendig@usz.ch * 通信地址:antonia.gabriel@usz.ch