缩写:EGFR=表皮生长因子受体;ERK=细胞外信号调节激酶;G12D=12 位甘氨酸突变为天冬氨酸;GDP=二磷酸鸟苷;GTP=三磷酸鸟苷;HRAS=Harvey 大鼠肉瘤病毒;KRAS=Kirsten 大鼠肉瘤病毒;LY=LY3962673;MEK=丝裂原活化蛋白激酶;NRAS=神经母细胞瘤 RAS 病毒致癌基因同源物;RAF=快速加速纤维肉瘤;RTK=受体酪氨酸激酶。参考文献:1. Kano Y 等人。Nat Commun. 2019;10(1):224。2. Hofmann MH 等人。Cancer Discov. 2022;12(4):924-937。3. Ostrem JML 等人。Nat Rev Drug Discov。2016;15(11):771-785。4. Gong X 等人。海报发表于:AACR 2024。摘要 3316。5. Iyer C 等人。海报发表于:AACR 2024。摘要 B115。
• ≥18 years of age with locally advanced or metastatic solid tumor of any tissue origin with KRAS G12D mutation • Disease progression on prior standard treatment, intolerance of or ineligibility for standard treatment, or no available standard treatment to improve disease outcome • Parts 1a and 1d: histologically or cytologically confirmed malignant solid tumor of any tissue origin • Part 1b: diagnosis of PDAC, CRC, NSCLC,或其他晚期实体瘤,而不是先前疾病组的一部分•第1C部分:确认的PDAC,CRC或NSCLC•第2A部分和2B部分: - 西妥昔单抗组合:PDAC或CRC- retifanlimab-DLWR的诊断:PDAC,CRC,CRC,CRC,或NSCLC,或NSCLC
摘要:在所有人类癌症的25%中发现了RAS家族蛋白的激活突变。不同的实体瘤与某些RAS的某些同工型中的突变相关,而Kirsten Ras(KRAS)是最常见的同工型。从历史上看,KRAS被认为是“不可能的”,主要是因为RAS蛋白似乎没有提出适当的口袋,而小抑制分子可以结合。但是,随着新颖的KRAS抑制剂的出现,这种情况在过去几年发生了变化。在这篇综述中,我们描述了KRAS突变在不同实体肿瘤中的作用,从而提供了目前正在开发的新型KRAS抑制剂的数据,并对此领域正在进行的研究进行了最新概述。进行了文献搜索,以选择KRAS突变实体瘤的KRAS抑制策略的论文,摘要和口头介绍。总的来说,针对KRAS G12C的分子获得了最有希望的治疗结果,从而为非小细胞肺癌的显着治疗改善铺平了道路。不幸的是,KRAS G12C突变在其他实体瘤中很少见,即胰腺导管腺癌和结直肠癌。目前在临床试验中评估了几种组合策略,以绕过负责突变KRAS对迄今为止采用的主要治疗策略的固有阻力的阻力机制。结果表明,KRAS的治疗情况已经开始改变,进一步的研究将在该领域带来治疗结果。
摘要:本综述总结了针对上皮癌细胞内驱动基因的合成药物和生物制剂的最新发展,重点是 KRAS,并为该领域提供了当前的观点和潜在线索。与生物制剂相比,小分子抑制剂 (SMI) 易于穿透细胞,因此能够靶向细胞内蛋白质。然而,SMI 经常受到多效性影响、脱靶细胞毒性和不可避免地引起耐药性的影响。相比之下,生物制剂是受细胞进入限制的更大分子,但如果克服这一问题,它们可能会具有更具体的效果和更少的治疗诱导耐药性。过去两年令人振奋的突破包括非共价 KRAS G12D 特异性抑制剂的工程设计、probody 双特异性抗体、药物-肽偶联物作为 MHC 限制性新抗原以促进 T 细胞的免疫反应,以及在乳腺癌和胰腺癌的过继细胞治疗方面取得的成功。
MET 在人类癌症中的作用的确立导致了小分子抑制剂的开发,其中许多目前正在进行临床试验。迄今为止,人们对它们的治疗效果和可能出现的治疗耐药性一无所知,这也是其他受体酪氨酸激酶 (RTK) 抑制剂经常观察到的问题。为了预测获得性耐药的机制,我们通过用浓度不断增加的 MET 小分子抑制剂 PHA-665752 或 JNJ38877605 处理 MET 成瘾细胞来产生耐药细胞。耐药细胞显示 MET 基因扩增,导致 MET 表达增加和组成性磷酸化,随后是野生型 (wt) KRAS 的扩增和过表达。携带 KRAS 扩增的细胞逐渐失去对 MET 的依赖性并获得对 KRAS 的依赖性。我们的结果表明,MET 和 KRAS 扩增是特定 MET 抑制剂耐药性的普遍机制,因为在两种小抑制剂和不同组织型的不同细胞系中观察到了类似的结果。据我们所知,这是第一份报告显示 wt KRAS 的过度表达可以克服 RTK 抑制剂的抑制作用。鉴于针对其他酪氨酸激酶的抑制剂的耐药性细胞模型已经预测并证实了临床发现,我们的结果为预防和/或克服耐药性的策略提供了见解。
针对RAS途径仍然是精确肿瘤学的圣杯。在胰腺导管腺癌(PDAC)的情况下,癌基因KRAS中的港口突变为90-92%,从而触发了规范的MAPK信号传导。过去没有结合口袋的KRAS蛋白质的平滑结构及其对GTP的亲和力在过去妨碍了药物的发展。KRAS G12C共价抑制剂的出现为瞄准KRAS提供了新的热情。然而,与RAS激活有关的众多途径确实导致了早期抗性的发展。此外,由致癌性KRAS决定的致密基质细分市场和免疫抑制微环境可能会影响治疗反应,从而强调了对基于组合的方法的需求。鉴于KRAS的突变发生在PDAC肿瘤发生早期,因此对其多效性作用的理解是该疾病进展的关键。在此,我们回顾了针对KRA的当前观点,重点是PDAC。
非小细胞肺癌 (NSCLC) 因其复杂的肿瘤内异质性而成为“精准医疗”的完美典范。它的特点是一系列分子变异,这些变异可以深刻影响这种疾病的自然史。随着时间的推移,人们发现了几种分子变异,为生物标志物驱动的治疗铺平了道路,并从根本上改变了“致癌基因成瘾” NSCLC 患者的预后。Kirsten 大鼠肉瘤 (KRAS) 突变存在于多达 30% 的 NSCLC(尤其是腺癌组织类型)中,并且已在几十年前被确定。自发现以来,其分子特性及其对特定底物的显著亲和力已导致 KRAS 被定义为不可治疗的变异。尽管如此,人们还是进行了许多尝试来开发能够靶向 KRAS 信号的药物,但直到几年前,这些努力都没有成功。直到最近,全面的基因组分析和广泛的遗传变异分析才允许识别不同类型的 KRAS 突变。这一棘手的步骤终于为 KRAS 突变患者的治疗方法开辟了新领域,并有望改善他们的预后和生活质量。在这篇评论中,我们旨在强调(表观)遗传 KRAS 特征中最有趣的方面,希望为 NSCLC 中靶向 KRAS 的最新技术指明方向。
RAS 蛋白是小分子鸟嘌呤核苷酸结合蛋白,可在非活性 GDP 结合状态和活性 GTP 结合状态之间循环。RAS 位于质膜内层,在生长因子的细胞外刺激下,通过受体酪氨酸激酶 (RTK)(如表皮生长因子受体 (EGFR))的上游信号传导将其激活(图 1a)。生长因子激活 RTK 会诱导其 C 末端酪氨酸 (Tyr) 残基的自身磷酸化。这些磷酸酪氨酸残基可作为两种含 SH2 的衔接蛋白 SHC 和 GRB2 的结合位点,而 SHC 和 GRB2 又会将鸟嘌呤核苷酸交换因子 SOS 募集到膜上。SOS 与 RAS 共定位会导致 RAS 上的 GDP 与 GTP 交换,并激活下游信号传导(Aronheim 等人,1994 年)。然后,通过 RAS 的信号传导被 GTPase 活化蛋白 (GAP) 的活性终止,GAP 刺激 GTP 水解为 GDP,并释放磷酸盐 (Trahey & McCormick 1987, Xu et al. 1990)。在活性状态下,RAS 通过多种下游通路发出信号,包括 RAF/MEK/ERK 和 PI3K/AKT 等,以调节转录、翻译、增殖和存活(详见 Downward 2003)。
尽管 KRAS G12C 抑制剂已证明 KRAS 是癌症的“可用药”靶点,但由于原发性和获得性耐药机制,KRAS G12C 抑制剂单一疗法的临床疗效有限。临床试验中已研究了 KRAS G12C 抑制剂与其他靶向疗法(如 RTK、SHP2 和 MEK 抑制剂)的多种组合以克服耐药性。它们已显示出良好的疗效,尤其是通过将 KRAS G12C 和 EGFR 抑制剂结合起来治疗 KRAS G12C 突变的结肠直肠癌。许多关于 KRAS G12C 抑制剂与其他靶向疗法(如 SOS1、ERK、CDK4/6 和野生型 RAS)的组合的临床试验正在进行中。此外,临床前数据表明 KRAS G12C 与 YAP/TAZ-TEAD 抑制剂、FAK 抑制剂和法呢基转移酶抑制剂的组合有其他有前景的疗效。 KRAS G12C 抑制剂与免疫疗法和化疗的联合应用也已开始研究,并已报告了初步结果。最近,不仅限于 KRAS G12C 的 KRAS 靶向疗法正在开发中,这可能会拓宽 KRAS 突变癌症的治疗前景。合理地将 KRAS 抑制剂与其他疗法联合使用可能会在未来治疗 KRAS 突变实体瘤方面发挥重要作用。
这是接受出版的同行评审纸的PDF文件。尽管未经编辑,但内容已受到初步格式。自然正在为排版纸的早期版本作为我们的作者和读者的服务。文本和数字将在本文以最终形式发表之前进行复制和证明审查。请注意,在生产过程中可能会发现可能影响内容的错误,并且所有法律免责声明都适用。