抽象的元编码已经提供了对微生物多样性的前所未有的见解。在许多研究中,简短的DNA序列被纳入较低的Linnaean等级,排名组(例如属)是生物多样性分析的单位。这些分析假设Linnaean等级在生物学上具有有意义的,并且排名相同的组是可比的。我们为海洋浮游硅藻使用了一个元尺寸数据集来说明这种方法的限制。我们发现,20个最丰富的海洋浮游硅藻属的年龄从4到1.34亿年不等,这表明属的不相等,因为有些人比其他属的时间更多。然而,物种丰富度在很大程度上与属年龄无关,这表明属中物种丰富度的差异通过物种和灭绝率的差异来更好地解释。分类学分类通常不会反映系统发育,因此属级分析可以包括系统发育嵌套的属,进一步的基于等级的分析。这些结果强调了系统发育在理解微生物多样性模式中必不可少的作用。
MGMT 3111人力资源管理BUSN 151 HR管理艺术类别属性:从Stockton Arts类别中选择OCC课程:艺术,MUSC,MUSC,DANC,THTR
对微生物浮游生物生物多样性的评估和监测对于获得对海洋环境的健康状况的良好评估至关重要。PETRI-MED项目通过制定新的策略来根据卫星观测来监测微生物浮游生物群落组成和功能来解决这一必要。培养皿将专注于地中海作为具有深远的生态和文化重要性的全球生物多样性热点。Petri-Med项目的主要目标包括(i)基于创新的卫星指标的开发,以确定微生物浮游生物社区的生物多样性状态和趋势,(ii)鉴定微生物浮游生物分布和多样性的微生物浮游生物分布和(iii)的自然连接式的生物群体及其多样性范围的范围,包括生物群体的自然连接,包括生物群的自然连接,包括生物范围。通过关注海洋健康和/或生物地球化学状态的关键指标。这样做,培养皿将主要依赖卫星光学放射测量(即海洋颜色,OC),从而利用最新OC欧洲数据集的时间和空间特征(即,由copernicus sentinel-3和欧洲航天机构的OC-CCI)具有偏僻的隔离式观察(即copernicus Sentinel-3和欧洲航天机构),并具有偏僻的海拔(AS-Art Space)。电流建模和基因组技术。为了实现合并遥感,生物地球化学/物理建模以及原位测量测量的雄心勃勃的目标,Petri-Med将依靠人工智能(AI)。PETRI-MED的总体目标是使决策者和利益相关者获得必要的知识,以根据定量的实时指标对生态系统管理采用优先级别方法。这包括保护和实施保护策略和政策,以保护生物多样性,量化各个层面实施的行动的影响,并为海洋保护区(MPA)(MPA),关键生物多样性领域以及生态或生物学上重要的海洋领域提供系统的,事实支持的事实支持。此外,彼得索(Petrimed)试图评估MPA管理对气候变化的可行性,从而确保在面对环境挑战时为保护海洋生态系统的保护策略。总而言之,PETRI-MED代表了一种全面而创新的方法,可以促进我们对地中海中微生物浮游生物生物多样性的理解。通过卫星技术,法学技术和AI的整合,该项目为有效的海洋生态系统管理和保护策略提供了宝贵的见解和工具。
海洋浮游生物群落形成了食物链底部相互作用生物的复杂网络,并在调节海洋生物地球化学周期和气候方面发挥了核心作用。但是,预测浮游生物社区会随着气候变化的响应而变化仍然具有挑战性。虽然物种分布模型是预测气候变化情景下物种生物地理变化的宝贵工具,但它们通常忽略生物相互作用的关键作用,这可以显着塑造生态过程和生态系统反应。在这里,我们引入了一个新颖的统计框架,关联分布建模(ADM),旨在建模和预测时空中的生态关联分布。应用于塔拉海洋基因组分辨的宏基因组学数据集,目前的生物地理位置摄影是临时海洋浮游生物协会的生物地理学揭示了沿纬度梯度组织的四个主要的生物地理生物群落。我们预测了这些生物群体特定社区的演变,以应对气候变化的情况,突出了对环境变化的差异反应。最后,我们探索了受影响的浮游生物社区的功能潜力,重点是碳固定,概述了其地理分布的预测演变以及对生态系统功能的影响。本文是主题问题的一部分,“相互关联的互动:通过空间和社交互动来丰富食物网研究”。
1塔斯马尼亚大学海洋和南极研究所,霍巴特大学,霍巴特大学,澳大利亚2号2南极气候和生态系统CRC,塔斯马尼亚大学,塔斯马尼亚大学,霍巴特大学7004,澳大利亚3 Aix Marseille Université大学(AAPP),塔斯马尼亚大学海洋与南极研究所,霍巴特大学7004,澳大利亚5地球科学院,澳大利亚国立大学,堪培拉2601,澳大利亚6海洋和生物地球化学系,F.-A。forel,日内瓦大学,1205年,日内瓦,瑞士7地球科学研究所,洛桑大学,1015年,瑞士洛桑市1015,瑞士8澳大利亚南极分部(AAD),金斯敦7050,澳大利亚澳大利亚7050,澳大利亚澳大利亚7050组织,澳大利亚霍巴特7004组织11 Laboratoired'OcéAnoghmiede Villefranche,Sorbonne Université,CNRS,CNRS,06230 Villefranche-Sur-Mer,法国 *通信 *通信:Marion.fourquez@gmail.com
摘要:控制了受冻土影响的湖泊中浮游动物的丰度和生物多样性的环境物理和化学因素是鲜为人知的,但它们确定了水生生态系统对正在进行的气候变化和水变暖的反应。在这里,我们评估了Bolshezemelskaya Tundra湖中浮游动物社区的当前状态(NE Europe的Permafrost Peatlands),并提供有关浮游动物的组成和结构的新信息。结果表明,浮游动物群落的结构受到湖泊形态特征和大植物湖泊过度增长程度的影响。根据浮游动物的定量发展水平,大多数苔原湖是贫营养类型的,平均湿生物量高达1 g/m 3。在小融化池塘的浮游动物群落中观察到的物种数量最多,其面积高达0.02 km 2,并且长满了大植物。对影响湖泊的形成的因素的分析表明,浮游动物的物种组成和定量特征是通过pH和水矿化控制的。与60年前收集的该地区湖泊的文献数据获得的结果比较表明,这些湖泊的生态系统处于稳定状态。总体而言,这些新见解将提高我们对控制浮游动力学的因素的知识,以独特但相当丰富的欧洲苔原的热力学湖泊,并受到持续的气候变暖。
1地球,海洋与环境学院,南卡罗来纳大学,美国南卡罗来纳州哥伦比亚大学,2太平洋生物科学研究中心,夏威夷大学,夏威夷大学,美国HI,HI,HI,HI,HI,美国HI,美国维也纳大学维也纳大学的功能与进化生态系3 DeBiovotité和écologieMicrobienne,Inrae,布雷斯特大学,法国普鲁赞奈大学,6学院,法国大学,法国,法国,7座生物学和海洋科学学院,普利茅斯大学,普利茅斯大学,英国普利茅斯大学,英国,英国,8号海洋生物学协会,伍德海,美国,海洋,9号。 10普兰斯顿淡水生态学与内陆渔业研究所浮游生物和微生物生态学研究所(IGB),德国Neuglobsow,12荷兰皇家荷兰皇家海洋研究所生物地球化学1地球,海洋与环境学院,南卡罗来纳大学,美国南卡罗来纳州哥伦比亚大学,2太平洋生物科学研究中心,夏威夷大学,夏威夷大学,美国HI,HI,HI,HI,HI,美国HI,美国维也纳大学维也纳大学的功能与进化生态系3 DeBiovotité和écologieMicrobienne,Inrae,布雷斯特大学,法国普鲁赞奈大学,6学院,法国大学,法国,法国,7座生物学和海洋科学学院,普利茅斯大学,普利茅斯大学,英国普利茅斯大学,英国,英国,8号海洋生物学协会,伍德海,美国,海洋,9号。 10普兰斯顿淡水生态学与内陆渔业研究所浮游生物和微生物生态学研究所(IGB),德国Neuglobsow,12荷兰皇家荷兰皇家海洋研究所生物地球化学
沿海水域的浮游微生物构成了食物网和生物地球化学循环的基础。波罗的海地区具有明显的环境梯度,是典型的沿海环境。然而,迄今为止,对这些环境梯度的微生物多样性评估既缺乏分类范围,也缺乏空间和时间尺度的整合。在这里,我们使用 DNA 宏条形码分析了 398 个样本的原生生物和细菌多样性,这些样本与波罗的海和卡特加特海峡-斯卡格拉克海峡的国家监测同步。我们发现,与其他环境因素不同,盐度对细菌群落组成的影响大于对原生生物群落组成的影响。同样,贝叶斯模型表明,在较低(<9 PSU)和较高(>15 PSU)的咸水盐度中,细菌谱系出现的可能性都小于原生生物。尽管如此,原生生物的 α 多样性还是随着盐度的增加而增加。细菌 α 多样性的变化主要是季节性的,与冬季通过垂直混合引入深水生物群有关。我们认为原生生物在生态上对盐度不太敏感,因为区室化使它们能够将基本代谢过程与细胞膜分离。此外,细菌进一步和更频繁地扩散可能会阻碍局部适应。最终,基于 DNA 的环境监测扩展了我们对微生物多样性模式和潜在因素的理解。40