12pm干燥方法对细菌纳米纤维素/MOS2杂交凝胶膜和珠的结构和特性的影响,以增强吸附和光催化应用» Leonardo Marchiori,先生Leonardo Souza Santos,先生Thiago Schuler博士Joseane Caroline Bernardes,MS。比安卡·马托斯(Bianca Mattos),先生Bruno Seiki Domingos Onishi,博士Ricardo Bortollet Santos,教授Ubirajara Pereira Rodrigues-Filho,博士Rafael Romano Domenguetti,教授Sajjad Ullah,博士卡洛斯·兰博(Carlos Rambo)教授Elias Paiva Ferreira Neto教授Sidney Ribeiro
由于 III-N 材料体系的独特性质,AlGaN/GaN 基异质结构可用于制造高电流 (> 1 A/mm [1, 2]) 和高功率 (> 40 W/mm [1]) 的高电子迁移率晶体管和肖特基势垒二极管等器件。此类结构中二维电子气 (2DEG) 浓度的典型值为 N s = 1.0–1.3·10 13 cm -2,电子迁移率 μ ~ 2000 cm 2 V -1 s -1 。通过增加势垒层中的 Al 摩尔分数进一步增加浓度会受到应变弛豫的阻碍 [3]。此外,当 2DEG 密度增加时,2DEG 迁移率通常会大幅下降 [4],因此电导率保持不变甚至变得更低。使用具有多个 2DEG 的多通道设计的结构可能是实现更高电导率的替代方法 [5, 6]。有关 GaN 多通道功率器件的进展、优点和缺点的更多详细信息,请参阅最近的评论文章 [6]。这种设计能够在不降低迁移率的情况下增加总电子浓度。然而,强的内部极化电场会导致导带能量分布发生显著改变,因此一些无意掺杂的结构的通道可能会完全耗尽,总电导率会明显低于预期。另一方面,向势垒层引入过多的掺杂剂可能会导致寄生传导通道的形成。因此,需要优化设计。在本文中,我们研究了单通道和三通道 AlGaN/AlN/GaN 异质结构的设计对其电学性能的影响。
,例如Rasp和Al。2018,Yuval和Yuval和O'Gorman(2021),KWA在Al。 (2023)2018,Yuval和Yuval和O'Gorman(2021),KWA在Al。(2023)
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
摘要 — 我们报告了使用两种缓冲层用于毫米波应用的超薄(亚 10 nm 势垒厚度)AlN/GaN 异质结构的比较结果:1) 碳掺杂 GaN 高电子迁移率晶体管 (HEMT) 和 2) 双异质结构场效应晶体管 (DHFET)。观察到碳掺杂 HEMT 结构表现出优异的电气特性,最大漏极电流密度 I d 为 1.5 A/mm,外部跨导 G m 为 500 mS/mm,最大振荡频率 f max 为 242 GHz,同时使用 120 nm 的栅极长度。C 掺杂结构在高偏压下提供高频性能和出色的电子限制,可在 40 GHz 下实现最先进的输出功率密度(P OUT = 7 W/mm)和功率附加效率 (PAE) 组合,在脉冲模式下高达 V DS = 25V 时高于 52%。
阈值电压不稳定很大程度上被归因于 p-GaN/AlGaN 堆栈中存在的两种竞争机制,即空穴和电子捕获,分别导致负和正的 V TH 偏移 [3-9]。其中一种机制的盛行程度可能取决于栅极偏压和温度 [3]、技术种类 [11] 以及应力 / 表征时间 [12]。总体而言,来自栅极金属的空穴注入和 / 或高场耗尽肖特基结中的碰撞电离已被确定为导致 V TH 不稳定的此类现象的根本原因。提出了一些工艺优化措施,例如降低栅极金属附近 p-GaN 层中的活性镁掺杂浓度 [11]、降低 AlGaN 势垒中的铝含量 [3] 以及优化 p-GaN 侧壁的蚀刻和钝化 [10],以限制正向栅极应力下的负和正 V TH 偏移。
Mie University,MIE 514-8507,日本摘要 - 超宽带隙(UWBG)材料(例如ALN)是一类材料的一部分,这些材料的一部分比传统的宽带隙(WBG)材料(例如GAN),例如GAN,例如GAN,允许更高的工作电压。在这项工作中,我们介绍了Aln/Algan/Aln双重异质结构的制造和DC/高压表征,这些异质结构是由Aln/Sapphire上的Metal Organic Chemical Vapor沉积重生的。报道了低于2µm的间距的泄漏电流约1100V的缓冲区分解,这对应于大约6 mV/cm的分解场。此外,晶体管在此异质结构上已成功制造,泄漏电流低和抗性低。确实已经达到了4.5 kV的击穿电压,而现状泄漏电流确实已经达到0.1 µA/mm。这些结果表明,Algan-Channel Hemts对高功率,高温未来的应用有希望。
量子技术使我们能够利用量子力学定律来进行诸如通信,计算,计算或传感和计量学等任务。随着第二次量子革命的持续,我们希望看到第一个新颖的量子设备因其出色的性能而取代经典的DECECES。从基础研究到广泛可访问的标准有很大的动力来形成量子技术。量子通讯承诺通过量子密钥分布具有绝对安全性的未来;量子模拟器和计算机可以在几秒钟内执行计算,其中世界上最强大的超级武器需要数十年的时间;量子技术实现了高级的成像技术。可能会出现进一步的申请。全球市场已经意识到了量子技术的巨大潜力。Menlo Systems是该领域的先驱,为这些新型挑战提供了商业解决方案。光子学与量子物理学之间的联系很明显。量子模拟和计算在这些类型的实验中使用冷原子和离子作为Qubits,实验室全球使用光学频率梳子和超稳定激光器。量子通信通常依赖于单个光子,这些光子是在近红外(-IR)光谱范围内精确同步飞秒激光脉冲产生的。量子传感和计量学需要频率梳和激光技术的最高稳定性和准确性。和 - 值得突出显示的应用程序 - 正在替换国际单位系统(SI)中第二个定义的光原子时钟。
英飞凌科技提供的评估板和参考板的设计考虑了环境条件。英飞凌科技仅按照本文档所述对评估板和参考板的设计进行了测试。该设计在整个工作温度范围或使用寿命内的安全要求、制造和操作方面均不合格。英飞凌科技提供的评估板和参考板仅在典型负载条件下进行功能测试。评估板和参考板不受与常规产品相同的退货材料分析 (RMA)、工艺变更通知 (PCN) 和产品停产 (PD) 程序的约束。评估板和参考板不是商业化产品,仅用于评估和测试目的。特别是,它们不得用于可靠性测试或生产。因此,评估板和参考板可能不符合 CE 或类似标准(包括但不限于 EMC 指令 2004/EC/108 和 EMC 法案),并且可能不符合客户所在国家/地区的其他要求。客户应确保所有评估板和参考板的处理方式均符合其所在国家的相关要求和标准。评估板和参考板以及本文件中提供的信息仅供合格且熟练的技术人员用于实验室使用,并应根据本文件和相应评估板或参考板随附的其他相关文档中规定的条款和条件使用和管理。客户的技术部门有责任评估评估板和参考板是否适合预期应用,并评估本文件中提供的与此类应用相关的信息的完整性和正确性。客户有义务确保评估板和参考板的使用不会对人身或第三方财产造成任何损害。评估板和参考板以及本文档中的任何信息均按“原样”提供,英飞凌科技不提供任何明示或暗示的保证,包括但不限于不侵犯第三方权利的保证和适用于任何目的或适销性的暗示保证。英飞凌科技对因使用评估板和参考板和/或本文档中提供的任何信息而造成的任何损害概不负责。客户有义务辩护,赔偿并保护英飞凌科技免受因使用本文档而产生或导致的任何索赔或损害。英飞凌科技保留随时修改本文档和/或本文提供的任何信息的权利,恕不另行通知。
1 收入要求是指公用事业公司在给定时期内通过费率从客户那里收取的总金额,用于支付公用事业公司的运营费用并向投资者提供回报。2 测试年是 GRC 周期的第一年,在此期间 CPUC 将采用公用事业运营预算。CPUC 会审查基于预测的成本数据。然后根据通货膨胀和其他因素调整测试年预算,以确定测试年后或测试年后的流失年份的收入要求。3 该决定授权 SoCalGas 和 SDG&E 从 2025 年 2 月 1 日开始按照新费率实施 2024 年收入要求。考虑到费率上涨对客户账单的影响,CPUC 认为将 2024 年少收的收入摊销 18 个月是合理的。这些账单影响估算不包括 2024 年少收收入的摊销。由于 GRC 决定实施较晚,2024 年摊销后的缺口还会进一步增加。对于典型的非 CARE 住宅客户,这相当于 SoCalGas 天然气客户(使用 37 热量单位)每月约 80 美元;SDG&E 天然气客户(使用 25 热量单位)每月 64 美元,SDG&E 电力客户(使用 400 千瓦时)每月 180 美元。4 个假设 1. 内陆和沿海地区平均,非 NEM 捆绑客户使用 400 千瓦时或 700 千瓦时。有四个电力气候区:沿海、内陆、沙漠和山区。沿海和内陆合计约占客户的 98%。2. 住宅违约率 TOU-DR1 用于计算账单。
