6量子技术和应用101 6.1扫描隧穿显微镜101 6.1.1锻炼:隧道重新审视102 6.1.2练习:表面的形状105 6.2光谱频谱107 6.2.1锻炼:氢气的发射光谱:氢气的发射光谱:锻炼108 6.2.2锻炼:氦气光谱110 6.3核磁共振6.3核能110练习:3.10练习:3.3.10练习。量子计算的块114 6.4.1练习:尺寸的祝福114 6.4.2练习:Qubit 116 6.4.3练习:量子门和繁殖器117 6.4.4练习:量子门是统一的117 6.4.4练习:Pauli旋转:Pauli旋转118 6.4.6练习119 6.4.7练习:锻炼120量子练习:铃响120量:120 6.5量子。 123 6.5.2练习:量子密钥分布123 6.6绝热量子计算126 6.6.1练习:量子最小化127
材料(ISSN 1996-1944)于2008年推出。The journal covers twenty-five comprehensive topics: biomaterials, energy materials, advanced composites, advanced materials characterization, porous materials, manufacturing processes and systems, advanced nanomaterials and nanotechnology, smart materials, thin films and interfaces, catalytic materials, carbon materials, materials chemistry, materials physics, optics and photonics, corrosion, construction and building materials, materials simulation and design, electronic materials, advanced and功能性陶瓷,眼镜,金属和合金,那么吗?物质,聚合物材料,量子材料,材料力学,绿色材料,一般。材料提供了一个独特的机会,可以贡献高质量的文章并利用其庞大的读者。
自从 1981 年 Mimura 博士展示出第一个高电子迁移率晶体管 (HEMT) 以来,HEMT 得到了迅速发展,并在不同的材料系统中商业化,用于各种应用。在早期开发阶段,基于 AlGaAs/GaAs、GaAs/InGaAs 和 InP 的 HEMT 被广泛应用于高速电子通信应用中,具有出色的噪声和功率性能。GaN HEMT 的发展为更多应用打开了大门,例如电力电子、毫米波频率系统、生物传感和抗辐射电子。最近,基于 AlGaN 和 Ga2O3 的超宽带隙材料 HEMT 已被引入并显示出令人鼓舞的结果。本期特刊将介绍创新的 HEMT 设备、基于 HEMT 技术的应用、HEMT 相关材料研究,包括外延生长、材料特性和制造技术以及 HEMT 模拟。
“合成致死”被定义为两个单独基因同时发生的改变之间的遗传相互作用,导致细胞死亡。合成致死已成为设计联合疗法或新型抗癌药物的一种有前途的方法。PARP 抑制剂 (PARPi) 是第一种利用合成致死设计的临床抗癌药物,它们在治疗 BRCA1/2 突变型癌症方面取得了巨大成功。尽管 PARPi 是 BRCA1/2 突变型卵巢癌的一线维持疗法,但必需或从头耐药性阻碍了其临床疗效。因此,需要新的“合成致死”伙伴和靶点来设计新型抗癌疗法。此外,迫切需要有效的组合策略来克服 PARPi 耐药性。因此,本期特刊将接受包括但不限于基于“合成致死”的新型抗癌疗法、探索抗癌疗法的新机制、克服PARPi的新型组合策略以及抗癌药物的新型分子靶点和作用机制的投稿。