研究小组或电化学能源转换和存储,部门,或化学与材料科学,学校工程,阿尔托大学,P.O。Box 16100,FI-00076,芬兰B LUT大学,Yliopiston Cat 34,53850,芬兰C Labratoire Matim,大学。 1, Uppsala, 75121, Sweden f TOFWERK AG, Schoore Streets 39, 3645, Thun, Switzerland g European Commission, Joint Research Centre (JRC) Pettes, Netherlands 54a i National Institute of Chemistry, Department of Materials Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia j National Physical Laboratory (NPL), Hampton Road,泰丁顿,TW11 0LW,英国k Die Physikalisch-Technische Bundstant,德国,机构 - 技术邦德斯塔尔,D-38116,德国邦迪,德国Box 16100,FI-00076,芬兰B LUT大学,Yliopiston Cat 34,53850,芬兰C Labratoire Matim,大学。 1, Uppsala, 75121, Sweden f TOFWERK AG, Schoore Streets 39, 3645, Thun, Switzerland g European Commission, Joint Research Centre (JRC) Pettes, Netherlands 54a i National Institute of Chemistry, Department of Materials Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia j National Physical Laboratory (NPL), Hampton Road,泰丁顿,TW11 0LW,英国k Die Physikalisch-Technische Bundstant,德国,机构 - 技术邦德斯塔尔,D-38116,德国邦迪,德国
印度班加罗尔理工学院 M. Tech 系助理教授 2 摘要:硬件安全涉及各种操作,包括电子商务、银行、通信、卫星、图像处理等领域。密码学不过是将纯输入文本转换为密码输出或反之亦然的过程。密码学有三种形式:私钥密码学、公钥密码学和哈希函数。私钥只不过是使用类似的密钥进行加密和解密过程,而公钥只不过是使用两个不同的密钥进行加密和解密过程。由于 AES 使用类似的密钥进行加密和解密,因此这种类型的性能非常重要,易于应用,并且需要的处理能力真正较低。加密过程是保护特定信息或数据通信的唯一方法。根据密钥长度,它更有效,并且有三种密钥长度选项可用,它们是 128 位、192 位和 256 位关键长度。密钥长度越长,破解系统或入侵系统所需的时间就越长。AES 执行四种不同的功能或转换,它们如下:子字节、移位行和混合列与添加轮密钥。通过使用流水线架构和 LUT,可以实现更高的速度。所提出的架构是在优化时序的基础上形成的,这是通过使用 verilog HDL 实现的。关键词:AES(高级加密标准)、FPGA(现场可编程门阵列)、LUT(查找表)、混合(混合列)移位(移位行)、子(子字节)。
可再生能源在一些国家,尤其是德国得到推广。另一方面,民众的抗议活动推迟了在居住区附近和休闲景观中建设电网和风力涡轮机。这些挑战需要一种方法,将未来可再生能源发展潜力的建模与自然和人类各自的脆弱性以及缩小可持续能源目标的可能性相结合。此外,最近对数据不确定性的分析表明,使用粗略的空间数据会严重影响国家层面可用面积的计算 6,7 ,从而影响预计的能源收入。因此,模型应在国家层面的计算中使用最新和最详细的数据,特别是在目标需要缩小的情况下。已经为不同国家开发了许多确定可再生能源发电潜力的方法,这些国家具有不同的输入参数、能源需求目标值或能源系统转换的时间框架。一种早期的区域尺度方法旨在整合自然保护和能源转型。该模型采用了包括不同生态系统服务在内的广泛标准,用于计算可持续可再生能源利用的潜力。该模型有助于确定高效能源生产与环境损害之间的权衡。8,9 到目前为止,许多国家的 2030 年情景主要使用芬兰 LUT 大学开发的 LUT 模型。该模型旨在最大限度地降低系统总成本,并使用区域数据,例如:电力和热力需求、现有电力和热力容量、财务和技术参数,以及所有可用技术的装机容量限制。10 计算针对中东和北非地区(MENA 地区)11 或欧洲等大片地区进行。12 该模型很好地概述了有效能源潜力及其与需求的关系。然而,它只提供了空间特异性,并没有足够详细地考虑自然保护限制。此外,决定总系统成本的经济标准推动了为 2050 年欧洲 100% 可再生能源而计算的情景。13 这些情景中使用的空间分析基于受保护保护区之外具有最佳能源潜力的地点的风能和光伏容量。潜力是根据欧洲再分析中期 (ERA-Interim) 天气数据集和科林土地覆盖 (CLC) 计算的,因此在空间上仍然不精确。虽然这些建模方法提供了很好的概览,但它们无法取代履行《巴黎协定》规定的国家义务所必需的国家分析。LUT 模型已用于几个国家案例研究,例如,计算
本文提供了基于AES的LUT和逻辑门比较S-Box Galois场方法,其芯片尺寸减小和延迟减少,这可以增强性能。数据安全是数字时代的基本要求。现代加密加密技术对于建立安全的通信至关重要。高级加密Satandard(AES)被广泛认为是加密字段最强的加密技术。使用Logic Gates Galios Field Carth Chare操作的三个阶段管道过程,以减少S-Box AES-256的延迟。因此,相应地增加了速度。此外,比较了建议和现有方法的结果。通过Virtex-5 FPGA设备模拟和系统的拟议批准以及Xilinx 14.7软件中的Verilog Code中的设计。
Shib Shankar Banerjee 1,#、Subhradeep Mandal 1、Injamamul Arief 1、Ramakanta Layek 2、Anik Kumar Ghosh 1、Ke Yang 3、Jayant Kumar 3、Petr Formanek 1、Andreas Fery 1、Gert Heinrich 1,4、Amit Das 1,5 * 1 德累斯顿莱布尼茨聚合物研究所 e。 V,Hohe Straße 6,德累斯顿,01069,德国 2 LUT 大学,拉赫蒂,Mukkulankatu 19,FI-15210,芬兰 3 马萨诸塞大学洛厄尔分校,先进材料中心,物理系,MA 01854,美国 4 德累斯顿工业大学,纺织机械和高性能材料技术研究所,Hohe Straße 6,德累斯顿,01069,德国 5 坦佩雷大学,工程与自然科学系,FI-33101,芬兰
芬兰核电站安全研究计划 2019-2022(SAFIR2022)延续了 1989 年启动的一系列芬兰国家核能研究计划。这些计划最初分别在安全运行方面(YKÄ 1990-1994、RETU 1995-1998)和结构安全(RATU 1990-1994、RATU2 1995-1998、OHA 1995-1998)领域开展,随后在联合计划(FINNUS 1999-2002、SAFIR2003-2006、SAFIR2010 2007-2010、SAFIR2014 2011-2014、SAFIR2018 2015-2018)中开展。同时,在国家核废料管理计划中开展了研究(KYT2022 与 SAFIR2022 并行进行)。SAFIR2022 包括四个主要研究领域:(1)总体安全和系统安全方法;(2)反应堆安全;(3)结构安全和材料;(4)研究基础设施。在八个参考小组的指导下,已在 36 个项目中开展了研究。项目的研究结果发表在科学期刊、会议论文和研究报告中。项目管理结构包括管理委员会、管理研究领域的四个指导小组、八个参考小组和项目管理部门。SAFIR2022 管理委员会的代表来自辐射与核安全局 (STUK)、经济和就业部 (MEAE)、Fennovoima Oy、Fortum、Teollisuuden Voima Oyj (TVO)、芬兰技术研究中心有限公司 (VTT)、拉彭兰塔-拉赫蒂理工大学 (LUT)、阿尔托大学 (Aalto)、坦佩雷大学 (TAU) 和瑞典辐射安全局 (SSM)。该计划的研究由 VTT、LUT、阿尔托、芬兰气象研究所 (FMI)、芬兰职业健康研究所 (FIOH)、TAU 和瑞典 RISE 研究机构开展。一些分包商也为项目工作做出了贡献。本报告由计划管理层与项目负责人和项目工作人员合作编写。有关 SAFIR2022 的更多信息,请访问该计划网站
我要感谢我的导师 Pertti Silventoinen 教授,让我在攻读博士期间一路顺风顺水,无需担心官僚主义障碍。我感谢这篇博士论文的审阅者和反对者 Rajan Ambat 教授和 Bálint Medgyes 博士,感谢他们花费宝贵的时间阅读和评论我的论文。此外,我还要感谢我的 ABB 导师 Kari Maula 博士在我的整个学习过程中提供的专业指导。我要感谢我的部门经理 Vesa Tiihonen 先生和我的团队经理 Jonas Strandell 先生,他们提供了一个可以轻松专注于研究的工作环境。我还要感谢系统驱动产品工程和质量部门的每一位同事,特别是 Joonas Leppänen 先生,感谢他分享了 IGBT 环境测试方面的知识和科学意见。我非常感谢 Drives Product、Quality and Reliability Laboratory 的同事们对我的支持、建议和帮助,尤其是 Joni Jormanainen 先生、Aleksi Vulli 先生、Natalia Kanko 女士和 Samu Kaius Järvinen 先生。你们花费了大量时间与我一起进行研究和撰写文章。此外,还要非常感谢 Mika Kiviniemi 先生处理构建和实施我们的测试设置和研究方法所需的所有订单。特别感谢 LUT 的 Olosuhdetestauskontti 团队,尤其是 Tommi Kärkkäinen 博士,感谢你们在我攻读 LUT 博士学位期间给予的大力支持。我还要向 Hanna Niemelä 博士表示最深切的谢意,她帮助我改进了这篇论文的语言。我要感谢我的父母 Kjell 和 Sari,感谢他们在我的一生中给予我的所有积极支持。最后,我的妻子蒂亚和儿子埃米尔,感谢你们多年来在我学习和职业生涯中给予我的爱、支持和鼓励。
超可靠 FPGA 的超冗余 本文介绍的研究主题是可用于高可靠性数字系统 (HRDS) 的超冗余元件和 FPGA 设备。当前的工作是基于 FPGA 为 HRDS 开发超可靠逻辑元件、存储器元件和缓冲元件,以及它们的仿真和可靠性评估。目标:为一个、两个和三个变量开发容错的 LUT 逻辑元件。开发容错静态随机存取存储器、D 触发器和缓冲元件。在 NI Multisim 中进行仿真以验证性能并估算复杂度和功耗。推导出评估所开发元件和设备的可靠性的公式,并建立与已知三重模块冗余方法的比较图。所用方法包括引入晶体管级冗余、Multisim 中的仿真方法、晶体管数量的数学估计、可靠性计算。得出以下结论:在晶体管级引入冗余并使用串并联电路时,晶体管的数量至少需要增加四倍。已经开发出能够承受一个、两个和三个晶体管故障(错误)的被动故障安全元件和设备。对其有效性进行了评估,表明它们优于多数保留。结论。已经对具有大量冗余的被动容错电路进行了综合和分析,以确保在给定数量的故障(从一到三个)中保留逻辑功能。成本高于作者先前提出的方法中保持功能完整性的成本,但这是值得的。尽管与多数冗余相比冗余度明显更高,但功耗却更低,延迟增加不明显。建议在无法维护的关键应用系统中使用所提出的超容错 FPGA。将来,建议使用桥接电路来考虑晶体管级的冗余问题。关键词:LUT;被动容错系统;可靠性;冗余。
摘要ITOH-TSUJII反转算法在发现诸如椭圆曲线密码学等密码应用中的倒数方面构成了主要贡献。在本文中,提出了一种新的HEX ITOH-TSUJII反转算法来计算由NIST推荐的不可舒服的三通式产生的二进制的二进制式栅极阵列(FPGA)平台上的多重逆逆向算法。基于十六进制算法的六角itoh tsujii反转算法是由十六进制电路和四链链构建的。此组合改善了资源利用率。实验结果表明,与现有实施相比,所提出的工作具有更好的区域时间性能。关键词:现场可编程栅极阵列(FPGA),ITOH-TSUJII反转算法(ITA),查找表(LUT),有限字段(FF)分类:集成电路
7.1 复位条件 7.2 输入格式化程序 7.3 RGB LUT 7.4 光标插入 7.5 RGB YC B -CR 矩阵 7.6 水平缩放器 7.7 垂直缩放器和防闪烁滤波器 7.8 FIFO 7.9 边界发生器 7.10 振荡器和离散时间振荡器(DTO) 7.11 低通时钟发生电路(CGC) 7.12 编码器 7.13 RGB 处理器 7.14 三重 DAC 7.15 HD 数据路径 7.16 时序发生器 7.17 HD 同步脉冲的模式发生器 7.18 I 2 C 总线接口 7.19 省电模式 7.20 对 SAA7104H 进行编程; SAA7105H 7.21 输入电平和格式 7.22 位分配图 7.23 I2C 总线格式 7.24 从属接收器 7.25 从属发送器