指南草案此指南文件仅用于评论目的。有关此文件草案的评论和建议应在联邦公报发表后的60天内提交通知,宣布指导草案的可用性。将电子评论提交https://www.regulations.gov。向码头管理人员(HFA-305)提交书面评论,食品和药物管理局,5630 Fishers Lane,RM。1061,Rockville,MD 20852。应将所有评论与在联邦登记册上发布的可用性通知书中列出的案卷号一起识别。有关此文件草案的疑问,请致电301-796-0521与William Pierce联系,或(CBER)通讯,外展与发展办公室,800-835-4709或240-402-8010。
弱监督隐藏物体分割 (WSCOS) 旨在使用稀疏注释的数据进行模型训练,以分割与周围环境良好融合的物体。这仍然是一项具有挑战性的任务,因为 (1) 由于内在相似性,很难将隐藏物体与背景区分开来,以及 (2) 稀疏注释的训练数据仅为模型学习提供弱监督。在本文中,我们提出了一种新的 WSCOS 方法来应对这两个挑战。为了解决内在相似性挑战,我们设计了一个多尺度特征分组模块,该模块首先按不同粒度对特征进行分组,然后聚合这些分组结果。通过将相似的特征分组在一起,它可以促进分割的一致性,从而有助于获得单个和多个物体图像的完整分割结果。对于弱监督挑战,我们利用最近提出的视觉基础模型“分割任何物体模型 (SAM)”,并使用提供的稀疏注释作为提示来生成分割蒙版,用于训练模型。为了减轻低质量分割蒙版的影响,我们进一步提出了一系列策略,包括多增强结果集成、基于熵的像素级加权和基于熵的图像级选择。这些策略有助于提供更可靠的监督来训练分割模型。我们在各种 WSCOS 任务上验证了我们方法的有效性,实验表明我们的方法在这些任务上实现了最先进的性能。代码将在 https://github.com/ChunmingHe/WS-SAM 上提供。
指南草案此指南文件仅用于评论目的。有关此文件草案的评论和建议应在联邦公报发表后的60天内提交通知,宣布指导草案的可用性。将电子评论提交https://www.regulations.gov。向码头管理人员(HFA-305)提交书面评论,食品和药物管理局,5630 Fishers Lane,RM。1061,Rockville,MD 20852。应将所有评论与在联邦登记册上发布的可用性通知书中列出的案卷号一起识别。有关此文件草案的问题,请致电301-796-0855与Eric Brodsky联系,或(CBER)传播,外展和开发办公室,请致电800-835-4709或240-402-8010。
摘要:甲基化是一种广泛存在的天然修饰,具有多种调节和结构功能,由大量 S -腺苷-L -蛋氨酸 (AdoMet) 依赖性甲基转移酶 (MTases) 进行。AdoMet 辅因子由多聚体蛋氨酸腺苷转移酶 (MAT) 家族从 L -蛋氨酸 (Met) 和 ATP 产生。为了推进机制和功能研究,已经开发出重新利用 MAT 和 MTase 反应以接受来自相应前体的可转移基团的扩展版本的策略。在这里,我们使用结构引导的小鼠 MAT2A 工程,以便从合成的蛋氨酸类似物 S -(6-叠氮己-2-炔基)-L -同型半胱氨酸 (N 3 -Met) 生物催化生产扩展的 AdoMet 类似物 Ado-6-叠氮化物。三种工程化的 MAT2A 变体表现出对延伸类似物的催化能力,并且在没有和存在竞争性 Met 的情况下,都支持与 M. Taq I 和小鼠 DNMT1 的工程化变体在级联反应中进行 DNA 衍生化。然后,我们使用 CRISPR-Cas 基因组编辑将两种工程化变体作为 MAT2A-DNMT1 级联安装在小鼠胚胎干细胞中。所得细胞系在暴露于 N 3 -Met 且存在生理水平的 Met 时,保持正常的活力和 DNA 甲基化水平,并显示出 Dnmt1 依赖的 DNA 修饰和延伸叠氮化物标签。这首次展示了一种用于生物合成生产延伸 AdoMet 类似物的遗传稳定系统,该系统能够在活哺乳动物细胞中对 DNMT 特异性甲基化组进行轻度代谢标记。■ 简介
CRISPR/Cas9 介导的基因敲入方法能够标记单个内源性蛋白质,从而如实地确定它们在细胞中的时空分布。然而,由于编辑事件之间存在串扰,因此在神经元中可靠地多路复用基因敲入事件仍然具有挑战性。为了克服这个问题,我们开发了条件性激活基因敲入表达 (CAKE),从而实现高效、灵活和准确的多路复用基因组编辑。为了减少串扰,CAKE 基于顺序重组酶驱动的向导 RNA (gRNA) 表达来控制每个供体序列的基因组整合时间。我们表明,CAKE 广泛应用于大鼠神经元,以共标记各种内源性蛋白质,包括细胞骨架蛋白、突触支架、离子通道和神经递质受体亚基。为了充分利用 CAKE,我们使用超分辨率显微镜解决了内源性突触蛋白的纳米级共分布,表明它们的共组织与突触大小相关。最后,我们引入了可诱导二聚化模块,可精确控制活神经元中的突触受体动力学。这些实验凸显了 CAKE 揭示新生物学见解的潜力。总而言之,CAKE 是一种多功能的多重蛋白质标记方法,可以检测、定位和操纵神经元中的内源性蛋白质。
使用基因编辑技术将大型DNA片段的精确精确插入到体细胞中,以标记或修饰内源性蛋白质仍然具有挑战性。由非同源末端连接途径产生的非特异性插入/删除(Indels)使过程容易出错。此外,插入物不容易移动。在这里,我们描述了一种称为Crisp R介导的E Xon(Crispie)的方法,该方法可以使用基于CRISPR/CAS9的编辑精确,可逆地标记内源性蛋白质。crispie插入了设计器供体模块,该模块由编码内含子序列的蛋白质序列的外显子组成,并将其内含子序列置于目标基因的内含子位置。插入连接处的Indels将被剪接,而mRNA几乎没有错误。我们使用Crispie在体内在哺乳动物神经元中荧光标记内源性蛋白,并以前未能达到的效率。我们证明了此方法广泛适用,并且以后可以轻易删除插入物。Crispie允许具有高保真,效率和灵活性的蛋白质序列插入。
抽象计算机层析成像血管造影(CTA)是诊断脑血管疾病(如缺血性中风)中最常用的方式之一。通常,缺血性卒中病例的感兴趣解剖结构是威利斯及其外围的圆圈,即大脑动脉,因为这些血管是闭塞的最突出的候选者。这些血管中闭塞的诊断仍然具有挑战性,这不仅是由于周围的容器大量,而且还因为大量的解剖变异。我们提出了一个完全自动化的图像处理和可视化管道,该管道为CTA数据提供了脑动脉树的完整分割和建模。该模型本身可以实现不重要的容器结构的交互式掩蔽。静脉,例如鼻窦的静脉,以及最短路径的互动规划,旨在用于准备进一步治疗,例如机械血栓切除术。此外,该算法会自动标记脑动脉(左右脑动脉,左右动脉,前大脑前动脉短,左右动脉左右动脉)检测这些血管中的闭塞或中断。所提出的管道不需要先前的非对比度CT扫描,并且可以像数字减法血管造影(DSA)一样实现可比较的分割外观。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2020年12月3日。 https://doi.org/10.1101/2020.12.03.409417 doi:Biorxiv Preprint
本文件“按重量、体积、数量或尺寸(长度、面积或厚度)标记消费品包装指南”基于美国国家标准与技术研究所手册 130“法定计量和燃料质量领域的统一法律和法规”中的统一包装和标签法规 (UPLR)。它概述了按重量、体积、数量或尺寸销售的消费品和商品的标签要求。本指南不能替代 UPLR。读者应参考 UPLR 以确保满足所有要求。本指南不适用于葡萄酒、麦芽饮料和蒸馏酒、受美国农业部标签要求约束的某些肉类和家禽产品包装以及贴有出口标签的包装。
氧化芳香族底物的酶已在一系列基于细胞的技术中显示出效用,包括活细胞邻近标记 (PL) 和电子显微镜 (EM),但也存在一些缺点,例如需要有毒的 H 2 O 2 。在这里,我们探索了漆酶作为哺乳动物细胞中 PL 和 EM 的一种新型酶类。LaccID 是通过 11 轮定向进化从祖先真菌漆酶产生的,它使用 O 2 而不是有毒的 H 2 O 2 催化多种芳香族底物的单电子氧化,并且对活细胞和固定细胞的表面质膜均表现出活性选择性。我们表明,LaccID 可与基于质谱的蛋白质组学一起使用,以绘制通过抗原特异性 T 细胞受体与肿瘤细胞结合的 T 细胞不断变化的表面组成。此外,我们使用 LaccID 作为可遗传编码的标签,用于在哺乳动物细胞培养物和苍蝇大脑中通过 EM 可视化细胞表面特征。我们的研究为未来基于细胞的 LaccID 应用铺平了道路。