申请说明:以下列出的文件将“至少”提交。如果您没有合理地提供任何必需的文件,则将在文件中提交一封简短的信,其中以缺少的文件为简短的简短说明,并以证明该数据包为合格的简短说明。FTSMCS系统将不允许您在不将文档上传到每个类别中的情况下进一步发展。如果您的ERB反映出反射的ASVAB得分,则必须在您的应用程序中提交最新的ASVAB得分表。任何不包括新分数并且不符合最低分数要求的申请人将被取消资格。!!!!所有申请人都将利用FTSMCS网站(启用CAC)申请并提交申请。链接和说明位于密西西比州的职业生涯页面底部,标题为FTSMCS申请人说明。除非系统不起作用,否则将没有其他提交申请的途径(即向下维护)。您的应用程序的任何问题都可以通过601-313-6363 Christopher.b.gurley.burley.mil@army.mil或SSG Melanie Sampson致电MSG Christopher Gurley,请致电601-313-6345 Melanie.l.sampson@army.mil..mil..mil..mil..mil..mil..mil..mil..mil..l.sampson.l..l.sampson.lar..l.sampson.larnie.l.sampson.larsy.mil。
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
今天在准备未来的同时采取行动是空气液体战略的核心。随着其战略计划,空中液化的目标是全球绩效,结合了财务和大财政方面。位于新市场上,该集团受益于主要资产,例如其业务模型,结合了弹性和实力,创新能力以及技术专业知识。该小组开发了有助于气候和能源过渡的解决方案,尤其是在氢气中 - 并采取行动以在医疗保健,电子和高技术领域的领域进步。
稀疏的高斯过程。在稀疏的高斯过程近似过程中已经进行了一系列工作,可以追溯到Snelson和Ghahramani(2006),Qui〜nonero-Candela和Rasmussen(2005)等。这些稀疏方法中的大多数都依赖于一个汇总的一组,称为诱导点,主要是选择这些点的确切方式。在Titsias(2009)中首先考虑了诱导点的变异学习,并被证明会导致显着的性能提高。而不是在非变化稀疏模型中使用近似边缘的GP可能性,而是在确切的GP边际可能性上的下限被得出并用作训练目标。与我们工作相关的另一种方法是Hensman等人的随机变异方法。(2013),作者提出了一个稀疏模型,除了降低GP复杂性外,还可以在小型批次中训练,从而使(极其)大型数据集使用GP模型。
摘要 在胸部 X 光 (CXR) 诊断领域,现有研究通常仅侧重于确定放射科医生的注视点,通常是通过检测、分割或分类等任务。然而,这些方法通常被设计为黑盒模型,缺乏可解释性。在本文中,我们介绍了可解释人工智能 (I-AI),这是一种新颖的统一可控可解释流程,用于解码放射科医生在 CXR 诊断中的高度关注度。我们的 I-AI 解决了三个关键问题:放射科医生注视的位置、他们在特定区域关注的时间以及他们诊断出的发现。通过捕捉放射科医生凝视的强度,我们提供了一个统一的解决方案,可深入了解放射学解释背后的认知过程。与当前依赖黑盒机器学习模型的方法不同,这些方法在诊断过程中很容易从整个输入图像中提取错误信息,而我们通过有效地屏蔽不相关的信息来解决这个问题。我们提出的 I-AI 利用视觉语言模型,可以精确控制解释过程,同时确保排除不相关的特征。为了训练我们的 I-AI 模型,我们利用眼球注视数据集来提取解剖注视信息并生成地面真实热图。通过大量实验,我们证明了我们方法的有效性。我们展示了旨在模仿放射科医生注意力的注意力热图,它编码了充分和相关的信息,仅使用 CXR 的一部分即可实现准确的分类任务。代码、检查点和数据位于 https://github.com/UARK-AICV/IAI。1. 简介
申请说明:将“至少”提交以下列出的文件。如果您无法合理获得任何所需文件,我们将在文件处提交一封简短的信函,说明缺少的文件,并简要说明证明该包符合资格所需的文件。FTSMCS 系统不允许您在每个类别中上传文件之前继续操作。如果您的 ERB 上显示的 ASVAB 分数不是最新的,您必须在申请中提交最新的 ASVAB 成绩单。任何未包括新分数且不符合最低分数要求的申请人将被取消资格。!!!!所有申请人都将使用 FTSMCS 网站(CAC 启用)申请和提交申请。!!!! 链接和说明位于密西西比州职业页面底部,标题为 FTSMCS 申请人说明。除非系统无法运行(即因维护而停机),否则将没有其他途径提交申请。如果您对申请有任何疑问,请联系 MSG Christopher Gurley,电话:601-313-6363 christopher.b.gurley.mil@army.mil,或 SFC Jaime Grammar,电话:601-313-6341 jaime.l.grammar.mil@army.mil。
申请说明:将“至少”提交以下列出的文件。如果您无法合理获得任何所需文件,我们将在文件处提交一封简短的信函,说明缺少的文件,并简要说明证明该包符合资格所需的文件。FTSMCS 系统不允许您在每个类别中上传文件之前继续操作。如果您的 ERB 上显示的 ASVAB 分数不是最新的,您必须在申请中提交最新的 ASVAB 成绩单。任何未包括新分数且不符合最低分数要求的申请人将被取消资格。!!!!所有申请人都将使用 FTSMCS 网站(CAC 启用)申请和提交申请。!!!! 链接和说明位于密西西比州职业页面底部,标题为 FTSMCS 申请人说明。除非系统无法运行(即因维护而停机),否则将没有其他途径提交申请。如果您对申请有任何疑问,请联系 MSG Christopher Gurley,电话:601-313-6363 christopher.b.gurley.mil@army.mil,或 SFC Jaime Grammar,电话:601-313-6341 jaime.l.grammar.mil@army.mil。
人类的视野。这种能力不仅对于诸如对象操纵和导航之类的实践日常任务至关重要,而且在培养人类创造力方面起着关键作用,使我们能够以深度,幽默感和沉浸感进行设想和制作对象。在本文中,我们重新审视了视图综合问题并提出:我们如何学习一般的3D表示以促进可扩展的视图综合?我们试图从以下两个观察结果中调查这个问题:i)到目前为止,目前的最新进展主要集中在训练速度和/或提高效率上[12,18,18,31,48]。值得注意的是,这些进步都共同依赖于体积渲染以进行场景优化。因此,所有这些视图合成方法固有地是场景特定的,再加上全局3D空间坐标。相比之下,我们主张一个范式移动,其中3D表示仅依赖场景颜色和几何形状,学习隐式表示无需地面真相3D几何形状,同时也从任何特定坐标系统中具有重要的独立性。这种区别对于实现可扩展性至关重要,以超越场景指编码所施加的约束。ii)本质上,视图合成更适合作为有条件的生成建模问题,类似于生成图像中的图像[25,60]。随着可用信息的增加,生成的场景变得更加限制,逐渐收敛于地面真相表示。仅给出一组稀疏的参考视图时,所需的模型应提供多个合理的预测,并利用生成表述中的固有随机性,并从自然图像统计信息和从其他图像和对象中学到的语义先验中获取见解。值得注意的是,现有的3D生成模型通常仅支持单个参考视图[20 - 23,44]。我们认为,更理想的生成配方应具有不同级别的输入信息。在这些见解的基础上,我们引入了Eschernet,这是一种图像到图像的条件扩散模型,用于视图合成。Eschernet利用了使用Dot-Product自我注意力的变压器体系结构[51],以捕获参考对目标和目标对目标视图一致性之间的复杂关系。Eschernet中的一个关键创新是相机位置编码(CAPE)的设计,专门代表4个DOF(以对象)和6个DOF相机姿势。这种编码的速率空间结构进入令牌,使模型能够仅基于其相对摄像机的转换来计算查询和密钥之间的自我注意事项。总而言之,Eschernet表现出以下非凡的特征:•一致性:埃舍内特固有地整合了视图的固定性,这要归功于相机位置编码的设计,从而鼓励了对目标对目标和目标视图视图的一致性。
为生物搜索中使用的显微镜图像仍然是一个重要的挑战,尤其是对于跨越数百万图像的大规模实验。这项工作探讨了经过越来越较大的模型骨架和显微镜数据集训练时,弱监督的clasifirers和自我监管的蒙版自动编码器(MAE)的缩放属性。我们的结果表明,基于VIT的MAE在一系列任务上的表现优于弱监督的分类器,在召回从公共数据库中策划的已知生物学关系时,相对实现的相对效果高达11.5%。此外,我们开发了一种新的通道敏捷的MAE架构(CA-MAE),该体系结构允许在推理时输入不同数字和通道的图像。我们证明,在不同的实验条件下,在不同的实验条件下,CA-MAE通过推断和评估在显微镜图像数据集(Jump-CP)上有效地概括了,与我们的训练数据(RPI-93M)相比,通道结构不同。我们的发现促使人们继续研究对显微镜数据进行自我监督学习,以创建强大的细胞生物学基础模型,这些模型有可能促进药物发现及其他方面的进步。与此工作发布的相关代码和选择模型可以在以下网址找到:https://github.com/ recursionpharma/maes_microscopy。
将可再生能源集成到现代智能电网中,由于能源产生的可变性和不可预测性,提出了重大挑战。对可再生能源输出的准确实时预测对于确保网格稳定性,优化能量分布并最大程度地减少了能量浪费至关重要。本研究探讨了针对智能电网中实时可再生能源预测的可扩展监督学习算法的开发和应用。