Tuesday 18 November 2025 13.00-13.30 Coffee, lunch and welcome 13.30-13.40 Introduction to the course 13.40-14.55 Causality, an introduction 14.45-15.00 Break 15.00-16.00 Data and models 16.00-17.30 Estimands & Target trial emulation – part 1 18.00-19.30 Dinner 19.30-20.30 Estimands & Target trial emulation – part 2 Wednesday 19 November 2025 8.30-9.00 Coffee and welcome 9.00-10.00 Propensity scores: theory 10.00-10.15 Break 10.15-11.30 Propensity scores: computer practical 11.30-12.30 Negative controls 12.30-13.30 Lunch 13.30-14.30 Mediation analysis 14.30-15.30 Instrumental variable & Mendelian randomisation: theory 15.30-16.00 Break 16.00-17.30 Exercise Mendelian randomization 18.00-19.30晚餐19.30-21.00定量偏置分析
尽管已采取合理的努力来获得第三方的所有必要权限,以在本文中包括其受版权保护的内容,但在此公认的手稿版本中可能不存在它们的全部引用和版权行。在使用本文中的任何内容之前,请参阅IOPSCIERCE上的记录版本,一旦发布以获取完整的引用和版权详细信息,因为可能需要权限。所有第三方内容均受到完全保护的保护,并且未按照CC按照许可在金色的开放访问基础上发布,除非该记录版本中的图标题中明确说明了这一点。
在岛上(env a -env d)和高度的三维表示,并标有El Teide Stratovolcano的峰值。G。G的近似分布。 Eisentrauti和G. G。与红线一起用黑线和系统发育进化枝分开(Thorpe等人1993; Richard&Thorpe 2001;布朗等人。 2006)。 G. G。 Insulanagae仅发生在近海胰岛Roque de Fuera de Anaga上。 采样区域显示了黑色圆圈,用于基因型环境协会(GEA)的南北采样区域以蓝色为彩色。1993; Richard&Thorpe 2001;布朗等人。2006)。G. G。 Insulanagae仅发生在近海胰岛Roque de Fuera de Anaga上。 采样区域显示了黑色圆圈,用于基因型环境协会(GEA)的南北采样区域以蓝色为彩色。G. G。 Insulanagae仅发生在近海胰岛Roque de Fuera de Anaga上。采样区域显示了黑色圆圈,用于基因型环境协会(GEA)的南北采样区域以蓝色为彩色。
Hope A. Tanis是1:2.3.4,Anna S.E.1,2,3,5,5,Ben Weisbur 7,2,3,Angli Xue 12,13,Michael Gray 12.13和Andre L.M. Reiz 3,14,Jonathan Margoliash 15,John Marshall 1:2,3,Bakiris Vivian 3:14,12:14,Stuart I. Alexander 4.24 4.24,Owen M. Siggs 1,2,3,Hannah R.Nicholas 1:2,3,1:2,3,1:2,3,1:2,3,1:2,3,3,2,3,2,3,2,3,2.2,3,2,1,2,3,5,5,Ben Weisbur 7,2,3,Angli Xue 12,13,Michael Gray 12.13和Andre L.M. Reiz 3,14,Jonathan Margoliash 15,John Marshall 1:2,3,Bakiris Vivian 3:14,12:14,Stuart I. Alexander 4.24 4.24,Owen M. Siggs 1,2,3,Hannah R.Nicholas 1:2,3,1:2,3,1:2,3,1:2,3,1:2,3,3,2,3,2,3,2,3,2.2,3,2,1,2,3,5,5,Ben Weisbur 7,2,3,Angli Xue 12,13,Michael Gray 12.13和Andre L.M.Reiz 3,14,Jonathan Margoliash 15,John Marshall 1:2,3,Bakiris Vivian 3:14,12:14,Stuart I. Alexander 4.24 4.24,Owen M. Siggs 1,2,3,Hannah R.Nicholas 1:2,3,1:2,3,1:2,3,1:2,3,1:2,3,3,2,3,2,3,2,3,2.2,3,2,Reiz 3,14,Jonathan Margoliash 15,John Marshall 1:2,3,Bakiris Vivian 3:14,12:14,Stuart I. Alexander 4.24 4.24,Owen M. Siggs 1,2,3,Hannah R.Nicholas 1:2,3,1:2,3,1:2,3,1:2,3,1:2,3,3,2,3,2,3,2,3,2.2,3,2,
转录因子(TFS)对于调节基因表达和细胞命运测定至关重要。表征TF基因在时空和时间上的转录活性是了解复杂生物系统的关键步骤。苔藓植物的营养植物分子分生组织具有一些特征,可以与流动植物的芽根尖分生组织具有。然而,与配子植物组织相关的TF的身份和表达方法在很大程度上尚不清楚。只有约450个假定的TF基因,马尔丁塔蒂亚(马丁坦蒂亚多形)是植物系统生物学的出色模型系统。我们已经产生了来自Marchantia TF基因的启动子元素的近乎完整的集合。我们在集合中为所有TF启动子进行了经验测试的记者融合,并系统地分析了Marchantia Gemmae中的表达模式。这使我们能够在早期营养发展中构建表达域的图,并确定一组在干细胞区域中活跃的TF衍生启动子。细胞标记提供了其他工具,并深入了解了配子分生组织的动态调节及其进化。此外,我们为集合中的所有启动子提供了在线表达模式的在线数据库。我们期望这些启动子元素将有助于细胞类型特异性,合成生物学应用和功能基因组学。
胃癌(GC)是最常见的临床恶性肿瘤类型之一,并且由于其高死亡率和预后不良,全球健康挑战。凝血级联反应与GC密切相关,并且在肿瘤免疫微环境中起关键作用。然而,与GC的发生和发育有关的凝血相关基因尚不清楚的具体机制。分别从TCGA和GSEA数据库获得了GC患者和凝血相关基因的数据。在单变量COX回归分析后,使用非负基质分解方法识别与凝血相关的分子亚型。GC患者基于中位风险评分分为高风险和低风险评分组,其中包括六个基因(PCDHAC1,HABP2,GPC3,GFRA1,F5,F5和DKK1)。两组之间的存活率存在显着差异,而1年,3年和5年生存的预测能力是有效的。在这里,我们证明了与凝血相关的基因特征在预测GC患者的存活中很有价值。此外,高风险分组还可以更好地反映GC中肿瘤突变负担的状态和肿瘤免疫浸润的特征,这为GC患者的个性化化学疗法和免疫疗法提供了理论基础。
7 Politico,“医疗保健的新农村边境”,2017年4月。8 UNC,Cecil G. Sheps卫生服务研究中心,“自2005年1月以来,195个农村医院关闭和转换”,2005年至今。9 Dobson Davanzo&Associates,LLC,“医院系统整合以改善美国农村医院的财务前景的潜力”,2024年11月。10美国政府问责局,“为什么在美国农村更难获得医疗保健”,2023年5月。11康奈尔大学康奈尔大学,康奈尔大学的距离是心脏病发作受害者生存的主要因素,康奈尔研究表明”,2004年2月。12宾夕法尼亚大学,宾夕法尼亚州LDI,“农村医院关闭的经济影响”,2022年6月。13 Riskiq,“风险情报摘要:2020年卫生部门的勒索软件:新目标和方法的完美风暴”,2020年4月。农村医院网络安全景观