摘要:与大规模硅制造兼容的硅光子学是一个破坏性的光子平台,表明对行业和研究领域(例如量子,神经形态计算,LIDAR)具有重要意义。尖端应用,例如高容量相干的光学通信和杂差激元,已升级对集成窄线宽激光源的需求。为此,这项工作旨在通过开发高性能混合III-V/硅激光来满足这一要求。开发的集成激光器利用单个微孔谐振器(MRR),演示了超过45 dB的侧模式抑制比(SMSR)的单模操作,激光输出功率高达16.4 mW。远离需要多个复杂控制的当前混合/异质激光体系结构,开发的激光体系结构仅需要两个控制参数。重要的是,这是通过降低表征这些激光器的复杂性来简化工业采用的。通过简洁的结构和控制框架,实现了2.79 kHz的狭窄激光线宽,低相对强度噪声(RIN)达到-135 dB/hz。此外,在测量10 dB的信噪比(SNR)的情况下,证明了12.5 GB/s的光学数据传输。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2024年4月2日。; https://doi.org/10.1101/2024.04.04.04.04.04.04.04.02.587715 doi:Biorxiv Preprint
在ER掺杂的磷酸盐玻璃中淬灭,用于紧凑的光激光器和放大器 / Pugliese,迭戈; Boetti,Nadia Giovanna; Lousteau,J。; Ceci Ginistrelli,Edoardo; Bertone,Elisa; Geobaldo,Francesco;米兰,丹尼尔。- 在:合金和化合物杂志。- ISSN 0925-8388。-657:(2016),pp。678-683。[10.1016/j.jallcom.2015.10.126]
理论:回收利用时,我们将事物拆除到其组成部分中,并将材料放回循环中,而不会损失任何质量。现实:大量的垃圾。我们如何按类型进行分类?Fraunhofer激光技术ILT ILT为此开发了一个新的过程:传感器使用激光发射光谱范围来识别在输送带上超过它的废料的化学成分。之后,使用人员或AI支持的自动系统用于排序。激光方法也适用于碎片废物,例如电子废物和车辆零件。它检测到有价值的原材料的最小数量,甚至只是合金成分,例如钼,钴或钨。使用激光检测器,比以前更多的材料可以找到回流的方法。
已经以其非凡的品质而闻名,例如极好的热量散热,暴露于温度变化时的最小不均匀膨胀以及传播紫外线光的能力(一种来自阳光的光和其他特殊灯(如特殊灯)的光线,但它是人眼看不见的),BZBP是一种理想的选择,可用于lasviole deep listav instrang intraviole。这些系统在医学诊断,半导体生产和尖端科学研究等领域至关重要。
不连贯的激光脉冲的自我形成似乎是自相矛盾的,既涉及强大的不稳定性和时间定位过程。不一致的脉冲状态在超快激光动力学中均经常出现。在本文中,我们通过实时录制不同的腔体分散液体下的不一致的脉冲动力学来带来决定性的实验数据。我们的测量值强调了发挥作用的不同主导机制。虽然孤子脉冲塑形有助于在异常分散体中创建一堆混乱的脉冲,而正常分散体状态下的不一致的脉冲遵循强烈的湍流耗散动力学。数值模拟在定性上很好地重现了观察到的动力学的最终堆积阶段。通过显示共同的动力学特征和差异,这些结果支持了不一致的耗散孤子的一般概念的发展。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
III-V材料在硅上的直接生长是开发单层积分激光器的关键推动剂,在重要通信和计算技术中为超密集的光子整合提供了巨大的潜力。但是,III-V/SI晶格和热膨胀不匹配构成了重大障碍,从而导致缺陷使激光性能降低。这项研究克服了这一挑战,证明了与天然GAAS底物上的顶级激光器相当的INAS/GAAS-SI激光器。这是通过新开发的外延方法来实现的,其中包括一系列严格优化的增长策略。原子分辨率扫描隧道显微镜和光谱实验揭示了活性区域的出色材料质量,并阐明了每种生长策略对缺陷动态的影响。优化的III-V-n-silicon脊脊 - 波导激光器显示出低至6 mA的连续波阈值电流,高温操作达到165°C。在80°C,对于数据中心应用至关重要,它们保持12 ma阈值和35 MW的输出功率。此外,使用相同过程在SI和GAAS底物上制造的激光均显示出几乎相同的平均阈值电流。通过消除与GAAS/SI不匹配相关的性能限制,这项研究为将广泛的III-V光子技术的广泛范围稳健而高密度整合到硅生态系统中铺平了道路。
欧洲形态的照片旨在使用光子基板从大脑中汲取灵感来设计有效的计算硬件。与标准的von Neumann体系结构相比,由于使用光学技术而导致的速度和并行性的潜在增长源于速度和并行性的潜在增益。在数值神经形态的光子平台中,令人兴奋的微晶石表现出在生物神经元中存在的许多特性,因此吸引了快速有效的脑浸入功能。从构建块开始,光学神经隆(主要目标)是设计具有可控权重的互连可激发节点的光子神经网络,从而实现了学习能力。这些构建块也可以是
报道了一种高度稳定的垂直外腔二极管泵浦无循环液体染料激光器。该设计简单(无需制造工艺步骤,无流体回路)、紧凑(~ cm 大小)且经济高效。报道的光学效率为 18%,M² 为 1,具有出色的光稳定性——在 50 Hz 下 140 万次脉冲后效率没有下降,该值与流动系统相当,远高于有机固态激光器可实现的值。我们表明热效应是该激光器稳定性和动力学的核心。详细研究了不同泵浦脉冲持续时间/重复率的激光建立和关闭动力学;它们表明,随着泵浦脉冲持续时间和重复率的增加,脉冲缩短,这被证明是由于热透镜衍射损耗造成的。这种激光结构为测试或收获可溶液处理的增益材料提供了一个非常方便和简单的平台。