Covidmemory.lu 是“一个收集来自生活或工作在卢森堡的普通人的 COVID19 相关照片、视频、故事和访谈的平台”。2 该平台由卢森堡当代和数字历史中心 (C 2 DH) 开发。该网站由我们的同事 Sean Takats 在 2020 年 3 月第一次封锁开始时发起,于 2020 年 4 月 3 日上线。它允许用户上传文本和媒体来记录他们在疫情中的日常经历,并探索其他人的分享内容。我们仍鼓励人们上传。他们可以通过一个简单的在线表格来上传,表格中询问他们经历的日期、姓名和电子邮件地址(这三个字段是必填的,但后两个字段不公开),以及可选的昵称和位置。继承历史研讨会的传统,像 covidmemory.lu 这样的快速反应收集旨在打破国家档案馆的沉默,并保护那些原本无法保存的材料。 3
有效的运动需要完整的运动和认知功能。越来越多的文献研究了运动认知干预措施,以提高健康或患病老年人的整体生活质量。对于此类干预,新的技术进步不仅在动机方面至关重要,而且对于改善多刺激世界中的用户体验也至关重要,这些世界通常以真实和虚拟环境的混合形式提供。本文为与运动相关的研究提供了一个分类系统,涉及在不同程度的虚拟环境中执行的运动认知干预。分类分为三类:(a)数字设备的类型及其提供的沉浸度;(b)人机交互的存在与否;(c)训练期间的活动参与,定义为活动>任务的1.5代谢当量。由于虚拟现实(VR)通常将不同的技术归类在同一术语下,我们提出了从计算机显示器和投影仪到头戴式VR技术的数字设备分类法。近年来发展迅速的所有沉浸式技术都归类在扩展现实(XR)这一总称下。这些包括增强现实 (AR)、混合现实 (MR) 和虚拟现实,以及所有尚未开发的技术。这项技术不仅在游戏和娱乐方面具有潜力,而且在研究、运动认知训练计划、康复、远程医疗等方面也具有潜力。本立场文件为基于数字设备、人机交互和身体参与的未来运动相关干预措施提供了定义、建议和指南,以便更一致地使用术语并有助于更清楚地理解其含义。
摘要 — 目标:构建一个可以在单个受试者的小型 EEG 训练集上进行训练的 DL 模型提出了一个有趣的挑战,这项工作正试图解决这一挑战。具体来说,本研究试图避免长时间的 EEG 数据收集过程,并且不组合多个受试者的训练数据集,因为这会对分类性能产生不利影响,因为受试者之间的个体间差异很大。方法:使用大约 120 次 EEG 试验对定制的具有混合增强功能的卷积神经网络进行训练,每个模型仅针对一个受试者。结果:经过修改的具有混合增强功能的 ResNet18 和 DenseNet121 模型分别实现了 0.920(95% 置信区间:0.908,0.933)和 0.933(95% 置信区间:0.922,0.945)的分类准确率。结论:我们表明,尽管本研究使用的训练数据集有限,但与同一数据集上先前研究中的其他 DL 分类器相比,设计的分类器具有更高的分类性能。
备注:1。空缺,需求和成功/不成功的分配数据显示该课程类别,除非另有说明,否则本回合中的主列表中选择的课程类别。2。在不同的“选择课程”回合的不同学生可以使用同一门课程。一般指南检查该课程是否在特定的一轮中可用如下:•“选择课程”第1轮是针对计划要求,受限/直接次要要求和CELC英语要求的受保护回合。•“选择课程”第2轮开始包括针对大学级别要求和不受限制的选修要求选择课程。3。“空缺”列显示了当前一轮的选择课程分配时的配额(按学生的职业生涯)。它会受到变化的约束,例如在为应得的学生运行分配过程之前由管理员分配的课程。在处理选定课程(第3轮)并提交课程请求时,将合并课程课程的所有可用空缺。当课程课程达到其最大容量时,它将使用“ - ”更新。在这种情况下,不允许学生选择课程或提交上诉。4。“其他”列包括诸如课程已经分配的原因,正在取消课程或学生的计划状态不再活跃。5。请注意,大多数法律选修课程的总配额(在所有学术职业中)为50。第17页,共107页,如11-Jan-25
摘要。本文旨在直接分析量子计算算法的能力,特别是 Shor 和 Grovers 算法,分析其时间复杂度和强力能力。Shor 算法使我们能够以比传统系统快得多的速度找出大素数的素因数。这对依赖于传统算法无法计算大素数素因数的经典密码系统构成了威胁。Grover 算法使我们的计算机系统搜索能力提高了一倍,这将对密码系统密钥和哈希的强力能力产生重大影响。我们还分析了这些算法对当今经典密码系统的影响,以及可以对安全算法进行的任何重大改进,以使其更安全。
3。基于正念的计划 - 定义为以好奇心和善良的关注能力(Kabat -Zinn 2003) - 已被证明会对儿童的自我调节技能产生积极影响(Zoogman等人。2014)并减少压力的负面影响(Biegel等人。2009; Broderick and Metz 2009; Mendelson等。2010)。
图。有关外显子和内含子区域的符号DNA序列瞄准了外显子和内含子区域的DNA序列上的分类。在本研究中的设计和方法论,使用基于人工智能的系统进行了DNA序列中的外显子和内含子区域的分析。独创性通常首选用于评估文本数据的聚类方法在DNA序列上使用。这种情况降低了计算成本。的发现是解决生物信息学领域越来越多的数据的解决方案,建立了基于人工智能的结构,可提供低成本。因此,研究与遗传学有关的情况变得更加容易。结论DNA结构上的外显子和内含子区域的准确率为88.88%。宣布道德标准本文的作者宣布,本研究中使用的材料和方法不需要道德委员会许可和/或法律特殊许可。
在原核生物和真核生物中,大多数已鉴定的离子泵 ATPase 属于以下三种结构类型之一。(i)F1Fo ATPase(F 型)存在于线粒体内膜(2)、叶绿体类囊体膜(3)和细菌细胞质膜(4)中。(ii)E1E2 ATPase(P 型)存在于真菌(5)、植物(6)和动物的细胞质膜中[包括 Na',K4-ATPase(7)和 H +,K + -ATPase(8)],以及肌细胞的肌浆网(Ca 2+-ATPase)(9)和细菌细胞质膜(K+-ATPase)(10,11)。 (iii) 已鉴定出第三类 ATPase(V 型),并从真菌和植物液泡(参考文献 12 及其中的参考文献)、包被囊泡(13、14)和嗜铬颗粒(15、16)的膜中部分纯化。正如 Mellman 等人(17)所建议的,我们使用术语“液泡 ATPase”来指代第三类 ATPase。F1Fo ATPase 通常使用 H+ 的电化学梯度(18)或偶尔使用 Na+ 梯度(19)来合成 ATP。这种类型的酶也表现出 ATPase 活性,在某些情况下仅在用蛋白酶活化后才表现出 ATPase 活性(20)。叠氮化物和 N,N'-二环己基碳二酰亚胺可抑制 F1Fo ATPase 的酶活性;寡霉素也可抑制线粒体 ATPase(21)。在 E1E2 ATPases 中,ATP 水解释放的能量与阳离子跨膜转运偶联。酶循环通过构象状态,包括形成磷酸化中间体。酶活性不受叠氮化物或寡霉素的影响,但被钒酸盐特异性抑制,在大多数情况下被 N-乙基马来酰亚胺和异硫氰酸荧光素抑制,而对于 Na4 ,K4-ATPase,则被乌巴因抑制 (5-11)。液泡 ATPases 似乎会水解 ATP,产生质子梯度,用于酸化细胞内区室 (12、17、22)。这组 ATP 酶因其抑制剂特异性而与其他两组 ATP 酶区分开来。液泡 ATPase 不受叠氮化物、寡霉素、钒酸盐或乌巴因的抑制。相反,
- 使用相关矩阵并分析每个功能以选择合适的培训。- 选择最合适的训练参数以提高准确性并避免过度插入/拟合。- 绘制结果并与真实数据进行比较。