摘要。本文的前两个部分(相应地,https://philpapers.org/rec/rec/penflt-2和https://philpapers.org/rec/rec/rec/penflt-3)表明,在希尔伯特(Hilbert)的范围内,对Fermat的最后一个概念的解释表明,在Hilthment的范围内,对Fermat的最后一段迹象表明,在范围内,这一迹象表明了一段范围的含义,并且在一个范围内都可以在一个范围内进行。 Kochen-第二部分中的Specker定理。相同的解释也可以用于基于格里森定理的证明FLT,并且与第二部分相似。(概率)衡量希尔伯特空间子空间的概念,尤其是其独特性的概念可以与部分代数或不可妥协的概念联系起来,或者将其解释为希尔伯特·阿里斯(Hilbert Arithmetic)两个双重分支的关系。对最后一个关系的调查允许FLT和Gleason定理在某种意义上等同于两个双对应物,而前者则可以从后者中推断出来,并且在与Gödel不完整相关的额外条件下,副副主义是对算术算术理论的额外条件。Qubit Hilbert Space本身可以通过FLT和Gleason定理的统一来解释。在广义上,通过希尔伯特算术在数字理论中的这种基本结果的证明可以推广到有关“量子数理论”的想法。它能够通过对希尔伯特算术的Peano算术的来源进行数学研究,通过调解“非标准双眼”及其两个双重分支,将其固有地与信息理论联系起来。然后,在更广泛的背景下,也可以重新实现无限分析及其在物理学上的革命性应用,例如,作为对时间量的方式(分别在物理学中被认为的时间派生过程中的时间衍生物)的探索,以便出现。最后,结果承认,仅由于其双重和愿意的对应物,对任何层次结构的产生或改变自身的变化方式。关键字:完整性,格里森定理,Fermat的最后一个定理,Hilbert Arithmetic,Idempotency and Eranchary,Kochen and Specker Therorem,Nonistard Biftion,Peano Arithmetic,Quantum Information
清洁和肮脏的能量与技术变革之间的替代弹性是讨论当今最具挑战性的问题之一,即气候变化之一。尽管其重要性,但很少有研究从经验上估算这些关键参数。在本文中,我估计了从微数据中的清洁和肮脏能量之间取代的弹性,并与技术参数共同反映了能量骨料内技术变化的方向。发现替代弹性范围为2至3的弹性。在数据中观察到的很大的肮脏能量偏见的技术变化验证了指导技术变革的框架,鉴于相对能源价格的历史运动和统一上方替代的估计弹性。但是,我还发现了暗示性的证据,表明近年来,随着相对能源价格的变化和清洁能源的补贴,清洁能源增长的技术的增长速度快于肮脏的能源增强技术。
在塑料占主导地位的时代(即“ 塑料烯 ” Haram 等人,2020 年),合成塑料材料和化学物质在我们的日常生活、工业和自然环境中无处不在,必须集中精力解决海洋塑料污染的根本结构性原因,特别是那些影响全球海洋偏远岛屿和沿海社区的原因。相反,在强调可持续利用海洋资源的蓝色经济转型背景下,将公平和可持续性纳入发展政策,为解决海洋塑料污染的系统性和根本结构性原因提供了关键机会( Bennett 等人,2023 年; Cisneros-Montemayor 等人,2019 年、2021 年; Simon 等人,2021 年)。塑料生产和污染政策与殖民主义遗产和全球不平等的持续存在紧密交织在一起,这些不平等塑造了塑料的生产、消费和处置
I.化学与健康科学学院医学专业的厄瓜多尔马查拉技术大学。 div>II。 div>厄瓜多尔马卡拉技术大学化学与健康科学学院医学专业的学生。 div>iii。 div>厄瓜多尔马卡拉技术大学化学与健康科学学院医学专业的学生。 div>iv。 div>厄瓜多尔马卡拉技术大学化学与健康科学学院医学专业的学生。 div>V.厄瓜多尔马卡拉技术大学化学与健康科学学院的医学专业学生。 div>vi。 div>厄瓜多尔马卡拉技术大学化学与健康科学学院医学专业的学生。 div>vii。 div>麻醉师,干预主义者,教师,辅导员马卡拉技术大学,马卡拉,厄瓜多尔。 div>
自然生态系统转化为人类修饰的景观(HML)是陆地生态系统中生物多样性丧失的主要驱动力,尤其是大型捕食者的丧失。他们的灭亡会大大改变食物网,有时会释放出较小的食肉动物,例如野马科的成员。尽管如此,即使是小食肉动物也必须适应人类对候对食物的可用性的影响,从而改变其资源使用。在这种情况下,在农业栖息地种植的农作物会深刻影响社区集会。在这里,我们对2017年7月至2018年8月之间收集的75个日本鼬鼠(Mustela Itatsi)Scats进行了饮食分析,以确定其季节性饮食习惯,该景观由日本东部西部帕迪田(Rice Paddy Fields)占据主导地位。从春季到秋天,日本鼬鼠主要消耗(半)水生和限制动物分类群,特别是侵入性小龙虾(Procambarus clarkii),昆虫(例如,鞘翅目和odonata)以及成年的阿努拉(Anurans)以及所有这些都是易于使用的宠物。在冬季,japanese鼬鼠主要消耗了果实(例如,无花果,五库里卡),由于干燥的稻田和灌溉沟渠中动物猎物缺乏动物猎物的稀缺,因此在SCAT的组合含量相对减少。尽管节俭在芥末饮食中是不寻常的,但我们的发现表明,日本的奶奶酪能够自适应营养可塑性,使它们能够在稻田栖息地中生存在非典型的资源条件下。为了加强在日本保护Mustela Itatsi的广泛努力,我们建议稻米单一培养物的多样化,并鼓励冬季洪水增加水生和半养生动物猎物的可用性。
微塑性污染已成为全球重要的环境挑战,对生物多样性,海洋生物和人类健康构成威胁。研究表明,从浮游生物到较大的鱼类,最终人类正在摄入微塑料,从而导致生理伤害,例如炎症,消化阻塞,组织损伤,荷尔蒙失效,生殖失效,生殖失效和通过食物链通过食物链。因此,迫切需要和需求实施有效和可持续的补救解决方案。不过,开发了各种缓解技术,有关技术进步的优势和缺点的信息较少。本评论强调了微塑料的来源,类型,运输中可用的明显信息以及检测微塑料污染的分析方法。强调了微塑性污染在印度海洋情景方面的全球视角。还解决了最近和高级缓解技术和解决方案,以防止,减少和回收这些微塑料污染。本综述进一步强调了对监测,管理和减轻微塑性污染的全面策略的需求,包括政策干预,公众意识运动和可持续的废物管理实践。解决此问题对于保存印度海洋生态系统的健康和维护人类生计至关重要。
摘要 胶质母细胞瘤 (GB) 是脑部最常见的恶性肿瘤。这些肿瘤大多是原发性或新生性 GB,其发病迅速,初期症状包括头痛、新发癫痫发作、局灶性神经功能障碍和精神状态改变。GB 的典型放射学特征包括强对比增强、中心坏死和伴有肿块效应的水肿。本文,我们描述了两例原发性 GB 病例——两名女性,年龄分别为 60 岁和 51 岁,她们分别在首次入院后 3.5 个月和 4 个月被诊断出患有 GB。这些患者表现为右侧头痛,神经系统检查结果在正常范围内。他们的初步放射学检查未发现可疑病变,无论是在 T1 加权还是 T2 加权磁共振 (MR) 图像上。这位 60 岁的患者因持续性头痛再次入院,她的 T1 加权 MR 图像显示右颞叶有一个边界清晰的肿块病变,具有强烈的对比增强。此外,T2 加权磁共振图像显示脑沟闭合和中线结构因水肿而肿胀。这位 51 岁的患者因持续性头痛再次入院,她的磁共振图像显示 T1 加权图像上肿块病变具有不均匀的对比增强和坏死,T2 加权图像上肿块病变具有严重水肿的高信号区域。患者接受了开颅手术和大体全肿瘤切除术。值得注意的是,在这两例病例中,病变均在病理上诊断为 GB。因此,应该记住,只有持续性头痛才可能是 GB 的警示信号,在放射学上可见之前,从而强调需要在短时间内进行随访影像学研究。
神经可塑性是指大脑响应内部和外部刺激而改变和适应的能力。通过改变神经元或神经胶质细胞的数量、形成新的回路、加强或削弱特定突触、改变树突棘的数量和/或其他机制,神经可塑性有助于突触强度的动态和适应性变化 [1][2]。然而,神经可塑性的受损与精神和神经系统疾病的发展有关,包括抑郁症样疾病 [3][4]。事实上,重度抑郁症 (MDD) 患者的神经发生和突触可塑性降低 [3]。其他研究表明,在患有 MDD 的个体中观察到神经可塑性异常 [4]。神经可塑性降低可归因于表观遗传机制对参与突触可塑性的基因的转录调控 [4]。这种损伤对与 MDD 相关的认知和情感症状的发展有显著影响 [3]。诱导或利用神经可塑性已成为一种有前途的治疗方法,可以抵消这些适应不良的影响并缓解症状 [3]。开发刺激神经可塑性的新方法可能是补充目前针对神经可塑性的精神疾病疗法的有效方法。然而,仍然需要进一步研究神经可塑性如何促进精神疾病的发展。尽管如此,确定神经可塑性在精神疾病中是如何被调节和改变的,对于开发针对神经可塑性潜在异常的治疗方法是必要的 [3]。
肿瘤甲状腺癌,BRAF非V600,NRA,联合免疫疗法和靶向治疗,病例报告。型甲状腺癌(ATC)是一种罕见的甲状腺癌,死亡率接近100%。BRAF V600和NRAS突变是ATC最常见的驱动因素。虽然可以通过BRAF靶向疗法治疗BRAF V600-Mutated ATC的患者,但没有有效的ATC治疗NRAS或非V600 BRAF突变。对于不可遗憾的驾驶员突变患者,免疫疗法提供了另一种治疗选择。在这里,我们提出了一个肿瘤PD-L1阳性(肿瘤比例评分为60%)和NRAS Q61R/ BRAF D594N突变的转移性ATC患者,该突变在PD-1抗体Sintilimab Plus Sintilimab Plus Sintilimab Plus血管生成抑制剂Anlotinib上进展。3类BRAF突变体D594N对MEK抑制剂Trametinib的抑制敏感,其致癌活性也取决于CRAF,BRAF抑制剂Dabrafenib可以抑制这种CRAF。由于这些原因,患者接受了达布拉尼,曲敏替尼和辛蒂利莫比的打捞治疗方案,这导致了完全的病理反应。据我们最大的了解,这是第一份关于与免疫疗法和靶向治疗结合结合的同时NRAS / BRAF非V600突变的ATC患者成功治疗的报告。需要进一步研究以解读dabrafenib/trametinib与PD-1抗体的结合的机制,克服了可能由并发的BRAF和NRAS突变介导的初始免疫疗法抗性。