重要安全信息——请阅读并遵守 • 作为全面记录检查程序的一部分,应由经过培训的人员按照 ANSI B30.10 中的时间表进行定期目视检查,以检查是否有裂纹、缺口、磨损、凿痕和变形。 • 对于在频繁负载循环或脉动负载中使用的吊钩,应定期用磁粉或染料渗透剂检查吊钩和螺纹。(注意:可能需要拆卸。) • 切勿使用喉口增大的吊钩,或其尖端偏离吊钩主体平面超过 10 度的吊钩,或以任何其他方式扭曲或弯曲的吊钩。注意:钩子尖端弯曲或磨损,闩锁将无法正常工作。 • 切勿使用磨损程度超出图 1 所示限度的吊钩。 • 停止使用有裂纹、缺口或凿痕的吊钩。如果有裂纹、缺口或划痕,应按照钩子的轮廓纵向打磨进行修复,前提是减小的尺寸在图 1 所示的范围内。• 切勿通过焊接、加热、燃烧或弯曲来修理、改装、返工或重塑钩子。•
SRAM 闪存 EEPROM MRAM 非易失性 − √ √ √ 写入性能 √ − − √ 读取性能 √ − − √ 耐久性 √ − − √ 功率 − − − √ MRAM 是一种真正的随机存取存储器;允许在内存中随机进行读取和写入。MRAM 非常适合必须存储和检索数据而不会产生较大延迟损失的应用程序。它提供低延迟、低功耗、无限耐久性和可扩展的非易失性存储器技术。ASx016A04 具有串行外设接口 (SPI)。SPI 是一种同步接口,它使用单独的数据和时钟线路来帮助保持主机和从机的完美同步。时钟告诉接收器何时对数据线上的位进行采样。这可以是时钟信号的上升沿(从低到高)或下降沿(从高到低)或两个沿;有关更多详细信息,请参阅本数据表中的指令序列。当接收器检测到正确的边沿时,它可以锁存数据。 ASx016A04 采用小尺寸 8 焊盘 WSON 和 8 引脚 SOIC 封装。这些封装与类似的低功耗易失性和非易失性产品兼容。ASx016A04 已在 -40°C 至 125°C 的工作温度范围内进行了测试,并在 125°C 下进行了 48 小时老化测试。
功能高性能操作误差放大器内部软启动/停止/停止/停止0.5%内部电压准确性,0.8 V电压参考OCP准确性,锁存前的四个重新输入时间“无损”差分电感器当前的“无损”差分电感电流•内部高精确的电流传感范围20 ns ocplifier示威范围•extive oscillative•extive oscillative•extive oscillative•extive 20 khz•100000 khz。内部门驱动器的非重叠时间5.0V至12 V操作支撑1.5 V至19 V VINV范围从0.8 V到3.3 V到3.3 V(使用12 V CC的5 V)通过OSC启用芯片通过电压锁定电压保护(OCP)固定量•保证的OCP THERENSUD保证•保证的OCP启动•热量••pressiated•pressiated•pressiated•pressiated•pressive•pressive•••pressiated••pressiated集成的MOSFET驱动程序内部R BST = 2.2集成的增强二极管•自动节省模式,以最大化光负载操作期间效率同步函数远程接地感应这是无PB- free设备*
在使用此保险箱之前,请检查保险箱以确保门闩锁正确。您可以使用随附的机械键执行快速测试。打开并关闭安全的5次。如果您发现任何问题或缺陷,请勿使用该产品。请通过support@vaulteksafe.com向Vaultek客户支持发送电子邮件。始终检查以确保安全门关闭时已锁定。此保险箱使用坚固的闩锁系统。牢固关闭前门中心附近。门需要牢固的压力,并在正确关闭时会自动锁定。尽快更改默认代码,以防止未经授权访问您的保险箱。不要丢失钥匙。发生停电的情况下,四个AAA电池将在低功率模式下持续约3个月。不要随时放置或存储备用键。请勿将装载的枪存储在本机中。枪支本质上是严重的,必须尊重。负责任地存储。将该产品远离小孩,因为包装包含可能成为窒息危险的小物品。
高速宽带分频器广泛应用于正交信号产生[1, 2]、时间交织THA和ADC系统[3, 4, 5]以及其他高速通信领域[6]。目前,已有多种基于不同拓扑和工艺的分频器被报道。特别地,InP DHBT在相同尺寸的器件下具有更高的击穿电压和更好的频率性能[7, 8],这意味着InP DHBT是高速分频器电路的更好选择。但是,电路的工作频率范围不能超过与器件工艺有关的截止频率ft的几分之一[9],这限制了电流型逻辑 (CML) 分频器的工作频率[9, 10]。为了提高分频器电路的高频性能,应努力提高相同ft 的器件的工作频率的利用率。已经发表了许多增强技术来扩展分频器的工作频率范围,例如电感峰值[9, 11, 12, 13],分流电阻负载[14, 15, 16],非对称锁存器[17],动态分频器[18, 19, 20, 21, 22]和双射极跟随器[23, 24]。然而,在电路设计中最大限度地利用器件ft的报道很少。本信
模块-1 VLSI设计简介,抽象水平和设计的复杂性,VLSI设计的挑战:功率,时机,面积,噪声,噪声,可检验性,可靠性和产量; CAD工具:仿真,布局,合成和测试。模块-2 MOS建模,MOS设备模型,短通道效应和速度饱和,MOS电路的缩放; CMOS逆变器,VTC,切换行为,噪声边缘和功率耗散;静态和动态的CMOS组合逻辑门,静态CMO中的晶体管大小,逻辑努力,传递晶体管逻辑,大小问题,多米诺骨牌逻辑门,估算负载电容,简单延迟模型(RC),CMOS门的简单延迟模型(RC),功耗;模块3布局设计,设计规则,棍子图;标准细胞布局,芯片布局和地板计划,阵列布局;数据路径单元,加法器,变速杆,乘数;控制逻辑策略,PLA,多级逻辑,合成以及位置和路线;闩锁和时钟,触发器,设置和保持测试,静态和动态闩锁和触发器,时钟分布,时钟合成和使用PLL的同步。模块4 MOS回忆,注册,SRAM,DRAM;互连的全局互连建模,电容,电阻和电感;信号和功率供应完整性问题,电气移民,RC互连建模驱动大型电容载荷,减少RC延迟; Verilog HDL。课程结果:
SRAM 闪存 EEPROM MRAM 非易失性 − √ √ √ 写入性能 √ − − √ 读取性能 √ − − √ 耐久性 √ − − √ 功率 − − − √ MRAM 是一种真正的随机存取存储器;允许在内存中随机进行读取和写入。MRAM 非常适合必须存储和检索数据而不会产生较大延迟损失的应用程序。它提供低延迟、低功耗、无限耐久性和可扩展的非易失性存储器技术。 ASxxxx208 具有串行外设接口 (SPI)。SPI 是一种同步接口,它使用单独的数据和时钟线路来帮助保持主机和从机的完美同步。时钟告诉接收器何时对数据线上的位进行采样。这可以是时钟信号的上升沿(从低到高)或下降沿(从高到低)或两个沿;有关更多详细信息,请参阅本数据表中的指令序列。当接收器检测到正确的边沿时,它可以锁存数据。 ASxxxx208 用双 CS# 连接两个四通道 SPI 设备,提供 8 位 I/O 数据路径。每个设备都可以使用自己的寄存器组进行配置和独立操作,由单独的 CS# 进行管理。ASxxxx208 采用 96 球 FBGA 封装。该封装具有单独的球,用于 CS1#、CLK1# 和 INT1(双四通道 SPI 设备 1)以及 CS2#、CLK2# 和 INT2(双四通道 SPI 设备 2)。该封装与类似的低功耗易失性和非易失性产品兼容。
可以用来预测未来的运动。[澄清声明:具有可预测模式的运动的例子可以包括孩子在秋千上荡秋千、球在碗里来回滚动以及两个孩子在跷跷板上。][评估范围:评估不包括周期和频率等技术术语。]3-PS2-3. 提出问题以确定两个彼此不接触的物体之间的电或磁相互作用的因果关系。[澄清声明:电力的例子可以包括带电气球对头发的力以及带电杆和纸张之间的电力;磁力的例子可以包括两个永磁体之间的力、电磁铁和钢回形针之间的力以及一个磁铁施加的力与两个磁铁施加的力。因果关系的例子包括物体之间的距离如何影响力的强度,以及磁铁的方向如何影响磁力的方向。][评估范围:评估仅限于学生可以操纵的物体产生的力,电相互作用仅限于静电。]3-PS2-4. 定义一个可以通过应用关于磁铁的科学思想来解决的简单设计问题。*[澄清声明:问题的例子包括构造一个闩锁来保持门关闭,以及创建一个装置来防止两个移动物体相互接触。]上述绩效期望是使用 NRC 文件《K-12 科学教育框架》中的以下元素制定的:
该芯片是一个16位I/O扩展器。它通过I 2 C或SMBus接口为大多数MCU系列提供远程GPIO扩展。CA9555有两个8位输入端口寄存器、输出端口寄存器、配置寄存器(设置为输入或输出)和极性反转寄存器(高电平有效或低电平有效)。上电后,16个I/O引脚配置为输入,并带有至V CC 的内部弱上拉电阻。然而,主机可以通过设置配置寄存器位单独将I/O引脚启用为输入或输出。如果没有外部信号施加到CA9555的I/O引脚,由于内部上拉电阻,电压电平为高。每个输入或输出的数据都存储在相应的输入或输出端口寄存器中。输入端口寄存器的极性可以通过极性反转寄存器反转。主机可以使用上电复位功能复位芯片,复位可能是由于超时或其他不当操作引起的,该功能将所有寄存器复位为默认状态并初始化 I 2 C/SMBus 状态机。该芯片具有输出锁存功能,可在使用高电流能力直接驱动 LED 时保护芯片。当任何输入状态与其对应的输入端口寄存器状态不同时,CA9555 开漏中断输出将被激活,并用于向系统主机指示输入状态已发生变化。可用封装:TSSOP-24、QFN4x4-24 封装。
1 GND P 电源地 2 AVDD P 电源 3 VCC P 电源 4 R0 I 红色数据输入(LSB) 5 R1 I 红色数据输入 6 R2 I 红色数据输入 7 R3 I 红色数据输入 8 R4 I 红色数据输入 9 R5 I 红色数据输入 10 R6 I 红色数据输入 11 R7 I 红色数据输入(MSB) 12 G0 I 绿色数据输入(LSB) 13 G1 I 绿色数据输入 14 G2 I 绿色数据输入 15 G3 I 绿色数据输入 16 G4 I 绿色数据输入 17 G5 I 绿色数据输入 18 G6 I 绿色数据输入 19 G7 I 绿色数据输入(MSB) 20 B0 I 蓝色数据输入(LSB) 21 B1 I 蓝色数据输入 22 B2 I 蓝色数据输入 23 B3 I 蓝色数据输入 24 B4 I 蓝色数据输入 25 B5 I 蓝色数据输入 26 B6 I 蓝色数据输入 27 B7 I 蓝色数据输入(MSB) 28 DCLK I 时钟输入(下降沿锁存数据) 29 DE I 数据使能 30 HSYNC I 水平同步输入,负极性 31 VSYNC I 垂直同步输入,负极性