全稳态锂离子电池(LIB)吸引了潜在安全的存储系统。1-7此外,近年来,已经对3D打印技术进行了调整以使Libs的制造,从而允许方便地生产柔性设计,例如微型3D形状。原则上,使用简单的打印系统可以将这种微电池直接集成到包含各种电子设备的基板上。最近,已经提供了用于Lib的阴极和阳极的3D可打印墨水。8-13在此工作,Lewis等。 意识到,使用3D可打印电极制造的锂离子微生物具有正确调整的流变学和电化学特性。 8 Kohlmeyer等。 开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。 11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。 可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。 14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成8-13在此工作,Lewis等。意识到,使用3D可打印电极制造的锂离子微生物具有正确调整的流变学和电化学特性。8 Kohlmeyer等。 开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。 11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。 可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。 14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成8 Kohlmeyer等。开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成14-18 Cheng等。使用高温直接ink写作技术开发了3D打印的混合固态电解质。15电解质墨水由溶解在n-丙基-N-甲基吡咯烷
1。Markets and Markets (2021, June) Lithium-Ion Battery Market with COVID-19 Impact Analysis, by Type (Li-NMC, LFP, LCO, LTO, LMO, NCA), Capacity, Voltage, Industry (Consumer Electronics, Automotive, Power, Industrial), & Region (North America, Europe, APAC & RoW) – Global Forecast to 2030. https://www.marketsandmarkets。com/com/market-reports/lithium-ion-battery-market-49714593。html?gclid = eaiaiqobchmi26ws-vv7wiv1aiicr2praumeaayasaaaaeayasaaaeagjfvd_bwe 2。Precedence Research (2022, March) Lithium-ion Battery Market (By Product: Lithium cobalt oxide, Lithium iron phosphate, Lithium nickel cobalt aluminum oxide, Lithium manganese oxide, Lithium titanate, Lithium nickel manganese cobalt; By Application: Consumer Electronics, Automotive, Industrial, Energy Storage System; By Capacity: 0–3,000 mAh, 3,000至10,000 mAh,10,000-60,000 mAh,60,000 mAh及以上;BNEF(2021,10月)全球锂离子电池供应链排名2021-2026。 https://www.bnef.com/insights/27437/view
ACC: Advanced Chemistry Cell BMS: Battery Management System DFI: Development Finance Institution DISCOMs: Distribution Companies E2W: Electric 2-Wheeler E3W: Electric 3-Wheeler E4W: Electric 4-Wheeler EV: Electric Vehicle FAME: Faster Adoption and Manufacturing of (Hybrid &) Electric Vehicles in India FDI: Foreign Direct Investment GCC: Gross Cost Contract GHG: Greenhouse Gas GW: Gigawatt GWh: Gigawatt Hour ICE: Internal Combustion Engine kWh: Kilowatt Hour LCO: Lithium Cobalt Oxide LFP: Lithium Iron Phosphate LMO: Lithium Manganese Oxide MaaS: Mobility as a Service MHI: Ministry of Heavy Industries NCA: Lithium Nickel Cobalt Aluminum Oxide NEMMP: National Electric Mobility Mission Plan NMC: Lithium Nickel Manganese Cobalt OEM: Original Equipment Manufacturer PE:私募股权PLI:生产激励措施研发:研发Stu:国家运输从事TCO:总拥有成本VC:风险投资
本评论涵盖了博茨瓦纳(Botswana)的一些关键电池金属(CMB)资源(CMB)资源和储量的矿物质矿藏的矿化和开发状况。电动汽车(EV)的快速开发导致对CBM和其他重要电池金属的前所未有的需求。Currently, lithium-ion batteries are the dominant rechargeable batteries for EVs, with the most common cathodes for EVs batteries being Lithium Cobalt Oxide (LCO), Lithium Manganese Oxide (LMO), Lithium Iron Phosphate (LFP), lithium Nickel Cobalt Aluminum Oxide (NCA) and lithium Nickel Manganese Cobalt Oxide (NMC) [1]。石墨被广泛用作锂离子电池中的阳极[1]。因此,很明显,电动汽车电池化学因素取决于以下五个关键矿物:锂,钴,锰,镍和石墨,而铜对于电动汽车的接线至关重要。在本综述中,我们着重于博茨瓦纳(Botswana)可用的EV相关矿产资源,可靠的储量和开发阶段的经济可行性和开发阶段的开发阶段,并突出了矿产和利益矿物质的潜在或机会,以使电动汽车的高纯度电池级材料。
锂离子电池是一类电化学电池,包含不同的化学变体,但所有变体都使用类似的过程运行。它们依赖于“摇椅”设计,其中 Li+ 离子在充电过程中从阴极转移到阳极,然后在放电过程中转移回阴极。对于大多数应用,主要的阳极材料是石墨或某种形式的碳,尽管钛酸锂 (LTO) 用于一些更高功率或高循环寿命场景。阴极材料有多种类别,包括磷酸铁锂 (LFP)、钴酸锂 (LCO)、镍锰钴酸锂 (NMC)、锰酸锂 (LMO) 和镍钴铝酸锂 (NCA)。上面列出的电极活性材料铸造在集电器上,集电器通常是铜(阳极)和铝(阴极),尽管 LTO 阳极也使用铝集电器。每种类型的阴极材料都有不同的设计特定能量(以 Wh/kg 为单位)和电池级标准化条件下的预期循环寿命,如图 1 所示。
以锂离子电池(LIB)形式的储能储存已在消费者,住宅,商业,工业和运输部门的广泛应用中越来越多地使用和接受。现在用于越来越大的应用,包括电动踏板车,电动自行车,电动汽车和电池储能系统(BESS),用于住宅,社区,社区,商业,商业和网格尺度的应用程序,包括电子烟和VAPES,手机,平板电脑,笔记本电脑和电动工具等便携式电子设备的技术。通常在120-180 WH/kg范围内,铅酸的30-180 kg范围,镍镉(Ni-CD)的50 WH/kg,镍钙(NI-CD)和60-70 WH/kg,镍氢化合物(NIMH)(NIMH)(NIMH)(NIMH)以及过去的两次均可使用的EVEDS的成本均可提高两次decade and decade and for for for vise and decadess in ni decadess in Decadess in Decadess的成本。 libs是指阴极的一系列电池家族,其中阴极由锂的各种氧化物组成。 一些常见的例子包括氧化锂(LiCoo 2或LCO),镍镍锰钴(Linimncoo 2,NMC或NCM),锂镍钴氧化铝(Linicoalo 2或NCA),含含氧液含量(linium Manganese氧化物(Limn)2 O 4或Lith Inlium Irinium Irinium Irrium Irinium Irinium Irrpe(Limn 2 O 4或Limn phlocke)锂离子聚合物(LIPO)。通常在120-180 WH/kg范围内,铅酸的30-180 kg范围,镍镉(Ni-CD)的50 WH/kg,镍钙(NI-CD)和60-70 WH/kg,镍氢化合物(NIMH)(NIMH)(NIMH)(NIMH)以及过去的两次均可使用的EVEDS的成本均可提高两次decade and decade and for for for vise and decadess in ni decadess in Decadess in Decadess的成本。libs是指阴极的一系列电池家族,其中阴极由锂的各种氧化物组成。一些常见的例子包括氧化锂(LiCoo 2或LCO),镍镍锰钴(Linimncoo 2,NMC或NCM),锂镍钴氧化铝(Linicoalo 2或NCA),含含氧液含量(linium Manganese氧化物(Limn)2 O 4或Lith Inlium Irinium Irinium Irrium Irinium Irinium Irrpe(Limn 2 O 4或Limn phlocke)锂离子聚合物(LIPO)。
bbls桶gwh gigawatt-kt kt kt kt ktoe ktoe千吨油量kWh千瓦时千瓦时千瓦时mmbtu mmbtu mmbtu百万英国英国热热单元mw megawatt tbtu tbtu tbtu tbtu trillion tbtu themeral tco2 tco2吨液化石油气液化石油气体RFO残余燃油区。SPV Distributed Solar PV FEC Final Energy Consumption TES Total Energy Supply TFC Total final consumption W2E Waste-to-Energy ECG Electricity Company of Ghana EPC Enclave Power Company Ltd GNGC Ghana National Gas Company GNPC National Petroleum Corporation GRIDCo Ghana Grid Company GSS Ghana Statistical Service NEDCo Northern Electricity Distribution Company NPA National Petroleum Authority PURC Public Utilities监管委员会Valco Volta铝公司VRA VORTA河管理局WAGP西非天然气管道WAPCO WAPCO西非天然气管道公司
从Origin开始“ O” Kissmig开始模拟“ IT”迭代的迁移,在以适合性层“ S”为特征的异质环境中步骤。原点“ O”的定殖细胞具有值1,未殖民的细胞值0。如果“ S”由几个适合性层组成以覆盖环境变化,则将其应用于每一层。适用性范围在0(不合适)和1(最大适合性)之间。Kissmig使用3x3算法进行物种传播/迁移。所有细胞在具有概率“ PEXT”的迭代步骤之前都均可出现,并且对于3x3邻域内的重新殖民化或新的定植事件角细胞是概率为“ PCOR”(“ PCOR” = 0.2产生更真实的圆形扩散模式 - 请参见Nobis&Normand 2014)。对于运行时光,为“签名” = true生成了签名的结果,即,即结果类型'foc,'lco'或'noc',符号表示最终分布(“ dis”),正值呈正面值和负值,但在最后一次迭代后均未殖民时,却没有呈斑点。要获得可重现的结果,可以使用“种子”参数设置R随机数生成器的种子。
摘要:着陆是航空母舰上所有作业中最危险的任务之一,着陆安全对飞行员和甲板操作都至关重要。目前,舰载机着陆的安全性通过设计自动着陆控制器和训练飞行员提高其控制能力来提高,但迄今为止尚未研究选择着陆路径的重要性。本文研究了航空母舰着陆路径选择问题,因为存在多个对应于不同情况的候选路径。考虑到环境信息和人为判断的模糊性,提出了一种模糊路径选择策略来解决该问题,目标是为飞行员提供更合理的决策。该策略考虑到了工业界广泛使用的模糊多属性群决策 (FMAGDM) 的思想。首先,给出着陆路径选择的背景。然后,抽象出影响决策的因素并建立概念模型。开发了基于TOPSIS的群决策方法来表示每个决策者对每条备选路线的偏好,并考虑到飞行员和着陆控制台操作员(LCO)的知识和权重来确定当前环境下的最佳着陆路径。在不同设置(即不同环境下)下进行实验研究