在考虑一系列资本成本的同时,对不同自主或备用小时数的柴油发电机组 (DG) 的平准化能源成本 (LCOE) 和基于锂离子 (Li-ion) 的电池储能系统 (BESS) 的平准化存储成本 (LCOS) 进行了比较。结果表明,DG 组的 LCOE 在 49.58 印度卢比/千瓦时至 57.63 印度卢比/千瓦时之间变化。当按 3.95 印度卢比/千瓦时的太阳能电价充电时,BESS 的 LCOS 在 39.71-61.72 印度卢比/千瓦时之间变化;当按 6.67 印度卢比/千瓦时的工业电价充电时,它在 43.71-65.71 印度卢比/千瓦时之间变化;当按 8.40 印度卢比/千瓦时的商业电价充电时,它在 46.25-68.25 印度卢比/千瓦时之间变化。研究发现,DG 组的 LCOE 最容易受到柴油价格的影响,而 BESS 的 LCOS 则主要受锂离子电池组的市场价格决定。
本研究引入了“氢互连系统”(HIS)作为长距离传输电能的一种新方法。该系统从闲置的可再生能源资产中获取电力,在电解厂将其转化为氢气,通过管道将氢气输送到需求中心,在那里,氢气在燃气轮机或燃料电池厂中重新转化为电能。本文评估了该技术与高压直流电(HVDC)系统的竞争力,计算了以下技术经济指标:平准化电力成本(LCOE)和平准化存储成本(LCOS)。结果表明,在所有 1 GW 系统场景中,如果在 2050 年建设距离超过 350 公里的 HVDC,HIS 的平准化电力成本与 HVDC 具有竞争力。在所分析的 12 种情景中,有 6 种情景(包括从 2025 年开始建设的情景)的 LCOS 低于使用大规模氢存储的 HVDC 系统。HIS 还应用于三个案例研究,结果表明,在所有情况下,从 LCOS 角度来看,该系统的性能均优于 HVDC,并且在所分析的两项研究中,投资成本降低了 15%–20%。
要做出明智的投资决策,能源系统利益相关者需要可靠的成本框架来响应(DR)和存储技术。虽然平整的存储成本(LCO)允许在不同的存储技术之间进行全面的成本比较,但存在对DI FF ERENT DR计划的比较的通用成本度量。本文介绍了需求响应的平整成本(LCODR),这与LCO相似,但通过考虑消费者奖励付款而与之至关重要的不同。此外,可再生能源的成本估计值的价值因素适用于DR的可变可用性。估算了四个直接负载控制(DLC)方案(DLC)方案的LCODR和十二个存储应用程序,并与最有竞争力的存储技术的LCOS文献值进行了对比。DLC方案是车辆到网格,智能充电,智能热泵和带有热存储的热泵。结果表明,只有带有热储存的热泵始终如一地胜过基于EV的DR Shemes对某些应用具有竞争力的储存技术。即使使用有限的用户数据,能源系统利益相关者的结果和基础方法也可以评估计划的竞争力。
锂数据:Lazard LCOS V2 -V7.0; VS3数据:Invinity发布的估计值; MISTRAL数据:Invinity&Development合作伙伴计划目标。计算假设额定功率排放,每年700个周期和6%的折现率。
ADB Asian Development Bank AfDB African Development Bank AIIB Asian Infrastructure Investment Bank APS Advanced Pledges Scenario AR6 Sixth Assessment Report BES Battery Energy Storage BNEF Bloomberg New Energy Finance C&C Control & Communication CBD Convention on Biological Diversity CBI Climate Bond Initiative CDS Credit Default Swaps CIF Climate Investment fund CO 2 Carbon Dioxide DFI Development Finance Institutions EBRD European Bank for Reconstruction and Development EIB European Investment Bank EMDCs Emerging Markets and Developing Countries EPC Engineering, Procurement, and Construction ES Energy Storage ESG Environmental, Social, and Governance ESS Energy Storage Systems EU European Union EVs Electric Vehicles FITs Feed in Tariffs GCF Green Climate Fund GEF Global Environment Facility GFANZ Glasgow Financial Alliance for Net Zero GHG Greenhouse Gas GW Giga Watt GWh Giga Watt hour IDBG美国跨美洲发展银行集团IEA国际能源机构IPCC气候变化ISDB伊斯兰发展银行kW kilo watt kwh kilo watt kilo watt lab lab铅酸电池lcos lcos lcos clave of Storage of Storage of Storage of Storage of Storage of Storage
Santec 的企业理念是通过光学技术的创新为世界提供新价值。我们开发、制造并向光传输设备制造商销售光通信组件。我们还为光学测量、光学处理和光学信息处理领域提供采用 LCOS 技术的空间光调制器。
• 使用自下而上的资本成本,LCOS 的估算基于以下假设:项目寿命 = 20 年,电池组寿命 = 10 年,放电深度 = 90%,利率 = 11%(名义),O&M 成本 = 资本支出的 1%,每日循环,电池组性能下降 = 每年 1%
储能是解决风能、太阳能等可再生能源发电方式不稳定性的有效方法,有望在可持续和低碳社会中发挥重要作用。经济性和碳排放是评估储能技术(EST)可行性时应充分考虑的重要指标。在本研究中,我们通过对EST的技术分析,研究了两种有前景的大规模可再生能源储能路线,电化学储能(EES)和氢能储能(HES)。在充分考虑这些路线的关键环节的情况下,对EES和HES在生命周期内的平准化储能成本(LCOS)、碳排放和不确定性进行评估。为了减少评估误差,我们使用蒙特卡罗方法从收集的数据中获取大量数据,并估算EST的经济性和碳排放水平。结果表明,与其他用于 EES 的电池相比,锂离子 (Li-ion) 电池的 LCOS 和碳排放量最低,分别为 0.314 美元/千瓦时和 72.76 克二氧化碳当量/千瓦时。不同的 HES 路线意味着不同的氢气生产组合,
不同的储能技术具有具有优势技术经济特征的特殊应用。因此,在当前文献中已经分析了商业成熟储能技术的当前和未来储存成本(LCO)。新兴的储能技术(例如长期飞轮)也正在争夺储能市场,但由于有限且可靠的公开可用数据,它们可以捕获哪些应用程序。在这项工作中,我们确定了典型的1 MW安装固定电化学能源存储(铅酸,钠硫酸盐和锂离子电池)和机械能量存储技术(短期持续时间飞行式飞行和长途飞行型飞行)在2020年到2050年的不同应用中使用更新的相关技术参数,该LCO的未来LCO。基于目前的储能成本,锂离子电池在不同的储能应用中产生最低的LCOE,从而证实了不同学术工作的先前前景。与其他存储技术相比,锂离子电池的成本优势由于成本迅速下降而持续上升。在没有锂离子电池的情况下,长时间的飞轮最初为广泛的应用提供了最低的成本,但它们与钠硫硫磺电池面临激烈的竞争。到2040年,硫磺电池的LCO含量低于长期飞轮的LCO。新兴储能技术的促进者和制造商必须找到迅速降低存储成本以确保其在储能市场中的利基市场的方法。