对产品可能应用领域的任何说明仅应展示这些产品的潜力,但任何此类描述均不构成任何形式的承诺。无论三菱化学先进材料对任何产品进行过何种测试,三菱化学先进材料都不具备评估其材料或产品是否适用于客户制造或提供的特定应用或产品的专业知识。最合适的塑料材料的选择取决于可用的耐化学性数据和实践经验,但通常需要在实际使用条件下(正确的化学品、浓度、温度和接触时间以及其他条件)对成品塑料部件进行初步测试,以评估其是否最终适用于给定的应用。
1个学生,G.V.I.S.H.,Amravati(MS),印度2物理学系G.V.I.S.H. 通过使用纳米沉淀方法制备了添加低密度聚乙烯(LDPE)的聚乙烯乙二醇(PEG)的多孔微粒。 使用傅立叶变换红外光谱,X射线衍射,扫描电子显微镜表征了准备的粉末样品。四面红外转化(FTIR)光谱证实了LDPE中PEG的存在,PEG在LDPE中的效应在LDPE中观察到了X-射线的峰值(X-Ray衍射)。模式表明没有新的阶段形成。 扫描电子显微镜图像表明,聚乙烯乙二醇的浓度降低了聚集,并增加了聚乙烯微粒的球形程度。 关键字:LDPE/PEG微粒,FT-IR,X射线衍射,SEM。 简介微粒被定义为尺寸小于1000 µm且大于1 µm的结构,也可以从可生物降解和不可生物降解的材料中获得。 纳米沉淀,乳液扩散,双重乳液。 [1]聚乙烯(PE)是一种基于分子构象的可量身定制特性的广泛使用的塑料,其应用从膜包装和电气绝缘到容器和管道。1个学生,G.V.I.S.H.,Amravati(MS),印度2物理学系G.V.I.S.H.通过使用纳米沉淀方法制备了添加低密度聚乙烯(LDPE)的聚乙烯乙二醇(PEG)的多孔微粒。使用傅立叶变换红外光谱,X射线衍射,扫描电子显微镜表征了准备的粉末样品。四面红外转化(FTIR)光谱证实了LDPE中PEG的存在,PEG在LDPE中的效应在LDPE中观察到了X-射线的峰值(X-Ray衍射)。模式表明没有新的阶段形成。扫描电子显微镜图像表明,聚乙烯乙二醇的浓度降低了聚集,并增加了聚乙烯微粒的球形程度。关键字:LDPE/PEG微粒,FT-IR,X射线衍射,SEM。简介微粒被定义为尺寸小于1000 µm且大于1 µm的结构,也可以从可生物降解和不可生物降解的材料中获得。纳米沉淀,乳液扩散,双重乳液。[1]聚乙烯(PE)是一种基于分子构象的可量身定制特性的广泛使用的塑料,其应用从膜包装和电气绝缘到容器和管道。pe主要基于密度和分子分支的程度。在半晶体材料(如聚乙烯和聚氟乙烯)中,材料的响应取决于分子结合和体积分数,除了温度和应变速率外,还取决于结晶度的体积分数。这些材料可以被认为是由一个无定形相组成的分子网络,该相位包含具有随机定向的结晶石相的纠缠链,其作用为物理交联。[2]纳米沉淀,也称为反应降水,脱溶液,溶剂置换和溶剂转移,由Fessi et.Al.In 1989描述,是一种开发纳米颗粒和微粒的方法[1],但有关其他Polymers,包括Polyolefimers,有限的含量。由于开发的方法不使用添加剂(例如表面活性剂),因此它提供的颗粒没有杂质会诱导生物体的不良影响。需要控制纳米沉淀产生的\颗粒大小的方法。[3]此外,该方法不需要或低表面活性剂浓度。[4]纳米沉淀技术的主要原理是界面
MARIA DANIELA STELESCU 1、ADRIANA STEFAN 2、MARIA SONMEZ 1、MIHAELA NITUICA 1*、MIHAI GEORGESCU 1 1 国家纺织和皮革研究与发展研究所,皮革和鞋类研究所分部,93 Ion Minulescu Str.,031215,布加勒斯特,罗马尼亚 2 国家航空航天研究所“Elie Carafoli”,220 Iuliu Maniu Blvd.,061126,布加勒斯特,罗马尼亚 摘要:本文介绍了基于乙烯-丙烯-三元共聚物橡胶和低密度聚乙烯的新型动态交联热塑性弹性体的开发,用增塑淀粉和具有化学改性表面的蒙脱石增强。在二水合氯化亚锡存在下,使用辛基苯酚甲醛树脂作为硫化剂。样品是在 Brabender Plasti-Corder 混合机上,在适当的温度和转速下,使用动态硫化方法和熔融插层技术获得的。使用特定模具和实验室规模的电动压机将获得的混合物制成具有标准尺寸的板材形式。从物理机械性能、熔体流动指数以及结构和形态的角度分析了获得的样品。观察到样品的特性受所用成分和获取方法的影响。根据所获得的特性,新的弹塑性材料可用于制鞋业(用于生产:鞋底、鞋跟、防护靴)、橡胶和塑料工业、汽车工业、农业或建筑业(制造垫圈、技术产品、软管等)。它们可以通过特定于塑料的方法轻松加工成不同的成品。
摘要:Macca Carbon(MC)粉末是一种源自澳洲坚果培养的生物质,它通过熔融和随后的熔融融化操作融合到低密度聚乙烯(LDPE)中。光学显微镜,扫描电子显微镜,差异扫描量热法,机械性能,机械性能,FIR发射功率,屏障特性,传输特性,抗菌活性测定和储存测试用于评估制造的LDPE/MC Composite -Composite -Composite -Composite -Composite -Composite Biosebosite blimicicalessseys antymicicales andimicimicial sepplications。复合膜的物理特性和抗菌活性与所使用的MC粉末量显着相关。LDPE/MC复合纤维中的MC粉末含量越高,FIR排放能力越好。仅按重量为0.5%的MC粉末显示出足够的基本效果特征,抗菌活性和储存性能,使生菜和草莓分别保持新鲜7天以上,在冰箱之外。这项研究表明,由MC粉制成的FIR复合材料是一种独特而潜在的包装材料,用于将来在食品行业中应用。
总是至关重要的是要满足工业消费者的范围,更需要更坚固,负担得起和多功能的材料。因此,聚合物基质复合材料(双重和混合矩阵)已在多个填充器中流行,以满足这些需求。石墨烯纳米平台(GNP)和碳纤维(CF)由于其出色的特性(例如良好的机械,热和电气性能)而在这些纤维中流行。低密度聚乙烯(LDPE),聚苯乙烯(PS),GNP和CF是流行的,并且在包装,汽车和航空航天工业中广泛使用。但是,最好看看这些领域在过去几十年中如何发展。因此,考虑确定混合和复合材料的整体性能的内容,本综述着重于LDPE和PS作为矩阵和GNP和CF的比较。在过去的几十年中,筛选了文献。包括双螺钉挤出机产生的混合物和/或复合材料。从所有数据库中总共检索了1628个相关论文。根据审查,可以推断出在航空航天行业等领域需要进行更多的研究,以识别最佳内容。大多数分析表明,填充表面积,分散和内容等因素会影响整体混合物和复合材料在机械性能方面的性能,尤其是弹性模量和拉伸强度以及其他特性。EMS和TSH变化是根据其最佳含量计算的。©2024作者。根据审查,意识到,使用20 wt%,2和30 wt%,2和30 wt%,2和4 wt%,以及20和30 wt%的纤维是最常见的组合,可以分别为LDPE,PS,PS,GNP和CF提供最佳含量。总体而言,LDPE和PS在包装区域都很好,但是在汽车,航空航天等行业中,仍需要改进其机械性能。由于GNP和CF的优势,它们用于不同应用,例如电气设备,医疗工具和汽车车辆。但是,这些特性很容易受到界面粘附,分散和聚集的影响。许多研究人员已经搜索了这些参数,并分析了如何防止这些参数的负面影响。总而言之,这项审查将对研究人员和工业人员意识到碳基复合材料的最先进以及LDPE,PS,GNP和CF的发展。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
2学生(CSE)KIIT被认为是大学,印度布巴内斯瓦尔,93531 42775,3名学生(机械)Kiit被认为是大学,印度布巴内斯瓦尔,印度布巴内斯瓦尔,8984030821,4助理教授(机械)Kiit(机械)Kiit to to be be be be be be be be be be becription offers of bectire 827,bhubanswar827,82在公共安全和城市基础设施中发挥重要作用。但是,有必要用智能路灯替换传统的路灯,这些路灯包含传感器和执行器与适当的设备集成,以使其更聪明。传统的路灯有许多问题,例如巨大的功耗,寿命较小,难以检测到故障。为了克服这些问题,有必要实施智能和先进的技术,例如基于无人机的空中检查,基于Zig Bee的无线传感器等等。这些技术不仅检测出故障,而且有助于减少时间的浪费,维护成本并提高其性能。因此,这项研究的目的是通过提高街道照明的效率和可靠性来建立智能的城市基础设施。关键字:路灯,基于无人机的空中检查,故障检测,LDR(轻度电阻器),运动传感器,物联网,纳米传感器,增强现实,超声测试。简介:从小就听到我们的社会一直是我们社会的恩赐,所以它也以某种方式从科学发展而来。我们都熟悉“ Iot”一词,这些事物不仅向我们介绍了新技术,而且还可以帮助人们使用智能技术来使用智能技术来制造系统,以制造系统,以制造系统的管理。街道灯就像有车辆的人一样的生存套件,也是最需要的参数,不仅是道路,而且在房屋外部,也可以为行人和驾驶员提供帮助。它并不像看起来很简单,它需要很简单,它需要很高的时间维持时间来维持时间,这是由于thundercrestorm,雨水等多年的时间都无法实现的时间。缺陷。但它是21世纪,需要对其进行更改并转移到技术的发展,这些技术超出了手动维护街道光线。目的是最大程度地减少并帮助减少在手动维护光线上的工作量,从而通过放置传感器或其他特定的软件来避免使用较长的街道,从而可以通过其他特定的软件来检测到有价值的时间。寿命和增强的控制选项也需要弄清楚。要解决此类问题,包括事故,需要建立智能路灯来代替
用于热能存储 (TES) 的相变材料 (PCM) 是一个新兴的研究领域,由于其对科学和技术领域的潜在影响而受到广泛关注。它有利于太阳能、智能纺织品、传热介质和智能建筑等各个研究和应用领域。1 – 4 LHTES 因其优异的相变行为 5 – 7 和高储热能力而成为该领域最有前途的方法。8,9 到目前为止,用于 LHTES 的相变材料 (PCM) 已在建筑储能领域得到广泛研究,例如建筑保温墙体、10 相变水泥板、11 太阳能空间冷却和建筑物供暖应用。12 在所有类型的 PCM 中,有机 PCM 具有理想的特性,包括合适的熔化温度、可忽略的过冷
摘要:我们研究了电致多气体改性 (EIMGM) 持续时间对印刷行业中使用的 PET 和 LDPE 聚合物基材的附着力和耐磨性的影响。研究发现,EIMGM 使 LDPE 的极性成分和完全自由表面能从 26 增加到 57 mJ/m 2,使 PET 的完全自由表面能从 37 增加到 67 mJ/m 2(由于材料表面形成了含氧基团)。尽管改性 LDPE 的纹理和形态异质性程度与初始状态相比增加了两倍以上,但它仍然不适合用作挤出 3D 打印的基材。然而,对于 PET,等离子体化学改性导致细丝对其表面的附着力显著增加(约 5 倍)(由于表面层的化学和形态转变),从而允许使用 FFF 技术在改性 PET 基材上进行增材原型制作。
2。包括低密度聚乙烯(LDPE)和高密度聚乙烯(HDPE)。3。Vuppaladiyam等人,《浪费到能量:废物塑料管理中的关键挑战和当前技术》,2024年4。PE和HDPE是高度可回收的,但是其他类型的塑料(例如PVC,PP,LDPE或PS)需要更复杂的工业过程才能重新生效。PET和HDPE的可回收性范围从50%到60%,但是某些类型的可回收性速率要低得多(降至10%)。由于各种原因,这些塑料类型较少可回收:PVC通常包括添加剂; PP经常被有机废物污染; LDPE和PS的密度非常低。EUR,塑料回收事实表,2020 5。Osama&Lamma,回收在保护环境中的影响,2021年;团队,塑料回收技术:环境有什么好处?- UBQ材料,2020年; Saleem等人,评估回收塑料颗粒的环境足迹:生命周期评估的观点,2023年
amaloy®清晰和特色聚合物Amco®PBTAmco®PC/ABSAMCO®PC/PBTAMCO®PETAMCO®PETAMCO®PPE/NYLONBAPOLAN®acetal®acetal®acetal®acetal(POM)copolymertomerBapolan®copolan®nylonBapolan®nylonBapolan®PC -Bapolene®PC -Bapolene®Bapolene®Bapebebape ldpe bape ldpe ®lldpebapolene®MABSBapolene®PETBapolene®PP均聚物Bapolene®EVAeva共聚物Bapolene®PP撞击Bapolene®PPBapolene®PP随机共聚物随机共聚物聚合物Primate®PPE-PE-PE-PES®PPS-PETTRILAC®PARARIC®PARARARIC®PARARIN®pARARINE pARARIN