Brian Drake 是国防情报局未来能力与创新办公室的人工智能主任。他领导该机构的人工智能研究和开发投资组合。作为一名分析师,他领导多个团队应对来自国家和非国家行为者的威胁,涉及技术、反情报和禁毒主题。他曾担任德勤咨询公司的经理和托夫勒联合公司的管理顾问,专门为商业和政府客户提供战略规划、业务发展、合作咨询、技术和创新服务。他还曾担任系统规划和分析公司的军事平台和政策分析师以及 DynCorp 的核武器计划分析师。他拥有默瑟大学的文学学士学位和乔治城大学的硕士学位。除了他的官方职责外,他还是国防情报纪念基金会的总裁兼首席执行官;为阵亡国防情报官员的子女设立的奖学金基金。
尽管神经辐射场 (NeRF) 在图像新视图合成 (NVS) 方面取得了成功,但 LiDAR NVS 仍然基本上未被探索。以前的 LiDAR NVS 方法采用了与图像 NVS 方法的简单转变,同时忽略了 LiDAR 点云的动态特性和大规模重建问题。鉴于此,我们提出了 LiDAR4D,这是一个可微分的 LiDAR 专用框架,用于新颖的时空 LiDAR 视图合成。考虑到稀疏性和大规模特性,我们设计了一种结合多平面和网格特征的 4D 混合表示,以由粗到细的方式实现有效重建。此外,我们引入了从点云衍生的几何约束来提高时间一致性。对于 LiDAR 点云的真实合成,我们结合了光线丢弃概率的全局优化来保留跨区域模式。在 KITTI-360 和 NuScenes 数据集上进行的大量实验证明了我们的方法在实现几何感知和时间一致的动态重建方面具有优越性。代码可在 https://github.com/ispc-lab/LiDAR4D 获得。
这些应用只是计算机视觉巨大潜力的冰山一角。随着机器学习、硬件功能和数据可用性的进步,该领域继续快速扩展。计算机视觉技术还在零售、游戏、增强现实、工业自动化、机器人技术和文化遗产保护等领域得到应用。随着计算机视觉的发展,我们可以期待在 3D 重建、对象跟踪、人体姿势估计、面部识别和视觉场景的语义理解等领域取得进一步突破。通过利用计算机视觉的力量,我们可以开拓视觉理解的新领域,彻底改变行业,并创造创新的解决方案,增强我们对视觉世界的感知和互动。
使用外部田地对齐各向异性纳米颗粒是释放其巨大潜力的新型应用潜力的主要障碍之一。最著名的例子是石墨烯,这是一个2D纳米材料家族,自发现以来就受到了极大的关注。使用石墨烯增强机械,热,电或气势屏障特性,赋予抗菌特性等,在很大程度上取决于控制其在基质材料(即聚合物)内的方向的能力。在这里,我们总结了使用磁场的石墨烯取向的最新进展。审查涵盖了与磁场相互作用的基础物理学,理论连续性力学框架诱导取向,典型的磁场方向设置以及用来增强材料的穿孔量的最新进展的摘要。当前的趋势,当前对齐技术的局限性被突出显示,并确定了该领域的主要挑战。
生成的神经辐射场(NERF)通过学习一组未经未介绍的图像的分布来综合多视图图像,表现出非常熟练的熟练程度。尽管现有的生成nerf具有在数据分布中生成3D一致的高质量随机样本的才能,但创建单数输入图像的3D表示仍然是一个巨大的挑战。在此手稿中,我们介绍了Zignerf,这是一种创新的模型,该模型执行零击生成的对抗网(GAN)倒置,以从单个脱离分布图像中生成多视图。该模型的基础是一个新型逆变器的基础,该逆变器映射到了发电机歧管的潜在代码中。毫无意义,Zignerf能够将对象从背景中解散并执行3D操作,例如360度旋转或深度和水平翻译。使用多个实数数据集对我们的模型的效率进行验证:猫,AFHQ,Celeba,Celeba-HQ和Compcars。
人类的历史就在这里。这是一片古老的土地,地球上的第一批人就在这里发现。古老的帝国曾在此地繁荣兴盛,如今已被遗忘,只剩下大片废墟。苏丹瓦赫达的本提乌/马拉卡尔地区位于白尼罗河上游和尼罗河支流巴尔加扎勒河沿岸,一段新的历史正在书写。这片干旱的土地被尼罗河肥沃的洪泛平原分割开来,为这里创造了世界上最肥沃的农业机会之一。努尔族和丁卡族部落已在此南部地区生活了几个世纪,耕种土地、放牧羊群。稍北一点是努巴族,他们以小部落的形式生活在山区。这里道路稀少,基础设施很少甚至没有。多年前,在小村庄里,人们挖了淡水井。这里没有电,也没有电话。医疗服务非常有限。学校和教堂都很简陋。这里有区域贸易中心,只有旱季才能通过小路和崎岖不平的道路到达。在这个地方,只有最强大的人才能够生存下来。这些村庄在部落领土的基础设施内生存了几个世纪。一些村庄通过无线电与外界联系。然而,在这些社区里,每个人都知道 9 月 11 日的事件。每个人都说“我们和美国站在一起,愿意帮助他们。现在你知道我们 50 年来经历了什么”。美国雪佛龙公司在这里勘探石油,并于 20 世纪 70 年代发现了大片油田。
结果:发现分别显示出140和40%的CO 2和N 2 O的大幅增加。甲烷排放量增加了3%,而CO 2排放的最大效应值为2.66,氮速率<150 kg/hm 2。CH 4排放的效应值随土壤有机含量的降低而增加,CH 4排放的效应值从浓度> 6 g/kg时变为正变为正。随着氮速率增加,在稻草回流下的n 2 O排放效应最初增加然后减少。n 2 o排放量显着增加。随机森林模型的结果表明,在稻草返回下影响CO 2和N 2 O排放的最重要因素是施用的氮量,并且影响稻草返回下玉米领域的CH 4排放的最重要因素是土壤有机碳含量。
摘要。XL首先是为了解决有限范围内确定的或过度确定的方程式系统,作为对多个密码系统的“代数攻击”。通过此类攻击(包括流密码)对基本的密码分析一直存在稳定的公告(例如,toyocrypt),PKC和更具争议性的密码(AES/Rijndael和Serpent)。对XL的先前讨论通常在模拟中很重,这当然很有价值,但我们希望更多地关注理论,因为理论和模拟必须互相验证,并且有些细微差别不易与模拟。在最近的这个方向上付出了更多的努力,但其中大部分仅限于大小的大基地,通常等于
海洋保护区(MPA)正在全球部署,以保护地球的生物多样性在快速变化的海洋中。自适应MPA管理和监测中的气候变化考虑因素正在成为一种更普遍的方法,尽管MPA规划中越来越多地解决气候变化,但仍然存在实施差距。本研究将气候鲁棒性指数(CRI)应用于MPA监测计划,以评估场地和区域层面计划中如何概述气候变化。以前开发了用于评估MPA管理计划的,CRI分数计划基于其气候变化适应原理的纳入程度,包括适应性管理的核心要素。我们通过将美国MPA的指数分数与选定的MPA特征相关联,并通过检查特定的物理,生态和社会气候变化的影响,并在监测计划的监测范围内考虑,并研究了特定的物理,生态和社会气候变化的影响,从而为监测计划提供了补充。我们在MPA监视计划中发现可起作的目标和阈值的差距很大,这与先前评估MPA管理计划的研究一致,这表明在许多情况下,自适应管理周期是不完整的。我们将完成自适应管理周期的重要性视为一种核心气候适应策略,并探索社会生态目标和地方伙伴关系的作用,这是在不断变化的世界中继续改善MPA结果的途径。
咸水滴灌是解决干旱地区淡水短缺问题的一个潜在解决方案。然而,长期使用会使土壤盐分积累并降低磷 (P) 的有效性。生物炭和秸秆改良剂已被证明可以减轻这些影响,但它们在调节长期咸水灌溉下参与磷转化的微生物基因方面的机制仍不清楚。本研究旨在评估生物炭和秸秆掺入对盐灌棉田土壤微生物群落结构和磷有效性的影响。基于 14 年的田间试验,开发了三种处理方法:仅咸水灌溉 (CK)、咸水灌溉加生物炭 (BC) 和咸水灌溉加秸秆 (ST)。结果表明,这两种改良剂都显著提高了土壤含水量、有机碳、总磷、有效磷和无机磷组分 (Ca 10 -P、Al-P、Fe-P 和 OP),同时降低了土壤电导率和 Ca 2 -P 和 Ca 8 -P 组分。生物炭增加了 Chloro flexi、Gemmatimonadetes 和 Verrucomicrobia 的相对丰度,而秸秆则促进了 Proteobacteria 和 Planctomycetota 的丰度。两种处理均降低了几种 P 矿化基因(例如 phoD、phoA)的丰度并增加了与 P 溶解相关的基因(例如 gcd)。相关性研究表明,微生物种群和 P 循环基因与土壤特性紧密相关,其中 Ca 2 -P 和 Al-P 是重要的介质。通常,在长期含盐灌溉下,生物炭和秸秆改良剂可降低土壤盐分,提高土壤 P 的有效性,降低磷循环相关微生物基因的表达并改善土壤特性。这些结果使它们成为可持续土壤管理的绝佳技术。