通过这项最新工作,该团队开发了一种方法来调整现有的大脑解码器,对艰难的方式进行训练,并在观看短暂而无声的视频(例如Pixar Shorts)的同时,在fMRI扫描仪中只有一个小时的培训。研究人员开发了一种转换器算法,该算法学习如何将新人的大脑活动映射到以前用于训练大脑解码器的活动的人的大脑上,从而在与新人的一小部分中导致了类似的解码。
摘要许多制造商现在已经建立了服务业务,以支持其产品的使用(通过服务创建),现在面临着可持续性和循环的新压力。本研究探讨了在实施循环经济时与供应链参与者的关系如何改变服务的制造商。基于对两个文献流的结构化文献回顾 - 服务和循环经济 - 本文概述了有关这些环境中关系动态的现有概念。提出了一个框架,详细介绍了创建圆形服务供应链时循环产品,零件或组件的恢复,处理和商业化的关系。为将来的工作的特定指示和未来研究的更广泛途径提供了创建循环供应链。这项研究的贡献源于从两个文献流的关键见解和创建循环服务供应链的拟议概念框架的结合和上下文化。
根据我们的协议,接受全腹部蚀刻的患者还必须具有长期的健康和健身目标。总体脂肪应在8%至15%之间。通常,这些患者非常适合,腹部扁平,但希望脂肪组织的特定减少以增强和详细说明肌肉组织。患者选择对于维持长期结果至关重要。我们以10年的术后结果进行了证明(图1)。我们认为,使用营养师和/或私人教练不一定是强制性的,因为许多患者保持健康的生活方式和低身体脂肪,而与这些介入无关。我们针对修饰的腹部蚀刻的选择标准,其中通过谱系半肌和沿着Linea alba的定义获得了较软的腹部轮廓,但不一定是“六羽”的完整肌肉定义,并不像全腹部蚀刻患者那样严格。与全腹蚀刻患者不同,他们的腹部脂肪垫中等。这些患者还应该具有运动性腹部肌肉和合理的健康计划。这项研究还证明了10%的血清率。我们注意到1990年代首次开始此过程时的血清瘤率很高,并开始使吸脂端口开放到排水管。自从这种情况下,我们注意到血清瘤速率为0%。这项研究也不特别认识到与腹部蚀刻相关的陡峭学习曲线和技术困难。意识到技术并学习这种技术确实存在陡峭的学习曲线,应该谨慎地形成。从使用较小,侵略性较小的插管和改良的腹部蚀刻开始(仅蚀刻Linea alba和Linea semilunaris)是一种安全的方法,对于外科医生开始使用该技术。首先通过浅表吸脂和差异脂质来建立凹槽是关键的。
QKLG的学习与发展连续性在计划和评估三岁孩子的教育经验时提供了必不可少的指导。Continua强调,学习是每个孩子反映其个人成长和需求的独特经历。连续图的目的是支持“时间点”评估和计划决策,以支持和促进个人以有意义和相关的方式学习个人。例如,遵循一系列的故事时间会议和经验探索感受,教育者可能会注意到,一个孩子在熟悉的情况下开始认识并命名自己的情绪,并且在更陌生的情况下,明确的支持是巩固并应用这些技能。认真的观察和对儿童学习时刻的真正欣赏,促进了信任,并促进了更多个性化的教育支持。
确定免疫反应与对有症状的 SARS-CoV-2 感染(即 COVID-19)的保护之间的关系有助于预测疫苗的未来有效性。这种关系应能实现免疫桥接(即预测候选疫苗的功效),有助于根据免疫原性数据批准新的或更新的疫苗,而无需进行大规模的 3 期试验 (1)。欧盟和美国使用免疫桥接来批准季节性流感疫苗,并降低了开发疫苗所需的成本和时间。此外,确定预防新型 SARS-CoV-2 变体所需的免疫水平将有助于预测人群水平的感染免疫力,并指导有关疫苗接种和加强接种的公共卫生政策。
经过近三十年的国际深入研究,碳纳米管 (CNT),尤其是单壁纳米管 (SWNT),仍然是纳米科学和量子科学研究的强大动力。这种典型的一维纳米科学物体具有各种电学、光学和机械特性,催生了大量的应用。这些应用面临的主要障碍是将高质量、合适的 CNT 定位和组织到特定的架构中,同时保留其优异的性能,这些性能通常与其晶体质量和高纵横比有关。因此,一条通往具体科学问题和应用的突出研究方向是寻找对齐、选择、定位和完善 SWNT 的策略 [1, 2, 3]。应用包括柔性高温电子器件、光电子器件和热电器件 [4]、纳米流体 [5]、终极纳米级晶体管 [6, 7]、纳米力学 [8]、扫描探针尖端 [9]、量子力学系统 [10] 和场发射 (FE) 源 [11]。为了通过更好地控制生长来克服主要障碍,显然首先希望在原子尺度上观察单个 CNT 的时间分辨生长,其次希望找到控制这种生长的有用工具,如果可能的话,最好是动态控制。对于这种控制,需要不同的外力,如电场 [12]、气流 [13]、与原子台阶的相互作用
b“全球对化石燃料枯竭和相关环境恶化的担忧刺激了人们对可再生和清洁能源的探索和利用进行了大量研究。能量存储和能量转换是当今可持续和绿色能源科学中最重要的两项技术,并在日常应用中引起了极大的关注。迄今为止,大量新型纳米材料已被广泛探索用于这些与能源相关的领域,然而,每种材料都有自己的问题,限制了它们满足高性能能量存储和转换设备要求的能力。为了满足未来与能源相关的应用的高技术要求,迫切需要开发先进的功能材料。在此,本期特刊旨在涵盖原创研究成果、简短通讯和多篇评论,内容涉及先进异质结构材料的合理设计和可控合成的创新方法及其在能源相关领域(如可充电电池、超级电容器和催化等)的吸引人的应用。”
要将以环境得出的元编码数据转换为社区矩阵进行生态分析,必须首先将序列聚集到操作分类单元(OTU)中。此任务对于包括大量带有不完整参考库的数据,包括大量的分类单元。OptimoTU提供了一种具有分类学意识的OTU聚类方法。它使用一组分类学识别的参考序列来选择最佳的遗传距离阈值,以将每个祖先分类群分组为最与后代分类单元最匹配的集群。然后,查询序列根据初步分类学标识和其祖先分类群的优化阈值聚类。该过程遵循分类学层次结构,从而将所有查询序列的所有查询序列完全分类为命名的分类学组以及占位符“ Pseudotaxa”,这些序列适合无法分类为相应等级的命名分类单元的序列。Optimutu聚类算法是作为R软件包实现的,在C ++中实现了速度的计算密集步骤,并合并了成对序列对齐的开源库库。距离也可以在外部计算,并且可以从UNIX管道中读取,从而允许大型数据集聚类,在该数据集中,整个距离矩阵将不方便地存储在内存中。Optimutu生物信息学管道包括一个完整的工作流程,用于配对端的Illumina测序数据,其中包含了质量过滤,DeNoising,Wratifact删除,分类学分类以及与Optimotu的OTU集群。开发了用于高性能计算簇的OptimoTU管道,并将其缩放到每个样品和数万个样本的数据集中。
本综述旨在回顾有限元法在优化工艺参数和提高粉末床熔合增材制造工艺部件的机械性能方面的应用。回顾了粉末床熔合过程模拟中的最新有限元模型。详细总结了宏观层面上激光束熔化或电子束熔化过程的数值建模方法。具体而言,阐明了零件模型预处理、工艺参数、网格方案和温度相关材料特性的重要性。还讨论了用于降低计算成本的模拟技术。然后回顾并讨论了现有的粉末床熔合过程模拟中的有限元模型。根据熔池和打印部件的特点对模拟结果进行分类。然后通过实验结果验证了模拟结果。最后,阐述了有限元法在材料设计、过程监控和控制以及工艺优化等其他增材制造问题方面的意义。总结了现有有限元模型的缺点。并提出了优化PBF工艺参数的潜在新方法。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。