只有承认我们主要参与的法律体系的殖民基础和持续的殖民影响,LEAF 才能实现实质性平等。这种参与和我们对殖民体系(包括殖民法律体系)危害的认识是 LEAF 工作中的一个根本矛盾。我们认识到非殖民化的重要性、解决殖民主义危害的必要性,并在工作中与土著人民结盟。然而,我们也承认,我们工作的基础肯定了一个本质上是殖民主义和有害的法律框架。LEAF 承认殖民法律对土著人民和民族生活造成的破坏性影响,并承认这些殖民体系(包括法律体系)对土著妇女和女孩生活产生的特别有害的作用。我们还承认土著人民和民族(包括妇女和女孩)的主权。 LEAF 目前正寻求挑战这些法律对殖民法律体系中的土著人民和民族,特别是妇女和女孩造成的有害影响。LEAF 在我们的倡导中采取反土著种族主义立场和减少伤害的方法。然而,LEAF 认识到 LEAF 的价值观和我们的方法在加拿大司法体系中的局限性和收缩性。LEAF 承认,和解的基础是去殖民化我们对法律的理解。这包括确定 LEAF 在确认殖民法律方面所占据的空间
Cassie Pyle Term Chair, University of Colorado Boulder Fellow, Association for Psychological Science Fellow, Peter Wall Institute for Advanced Studies, University of British Columbia Fellow, Society for Personality and Social Psychology Green Faculty Award, University of Colorado Boulder Outstanding Dissertation Research in Positive Psychology, John Templeton Foundation Psi Chi National Honors Society for Psychology Sage Fellowship, Cornell University Service Excellence Award, Department of Psychology and Neuroscience P eer r eviewed p ublications(*学生合作者,†同等贡献)
植物长期以来一直用于烹饪和治疗目的。在商业上,对植物的植物化学研究非常重要,并且对潜在药物有很多兴趣。当前研究的目的是使用水,甲醇,乙醇,丙酮和乙酸乙酯等极性溶剂进行定性和定量分析中的叶片提取物的重要生物活性成分。非极性溶剂是己烷和氯仿。使用标准技术来确定植物化学成分的定性和定量分析。对维斯科萨菌的定性研究表明,存在二次代谢产物,包括生物碱,蛋白质和氨基酸,碳水化合物,还原糖和皂苷。植物固醇,糖苷,单宁,糖苷,酚,香豆素,三萜类化合物。通过定量分析,发现乙酸乙酯中总类黄酮(40.91±0.01 mg/g QE)的最高浓度。槲皮素被用作标准,发现乙醇中的总生物碱(26.11±0.005 mg AE/g)等同于阿托品硫酸盐。总苯酚(2.07±0.29 mg gae/g)在甲醇中相当于食道酸。对植物的其他研究将有助于识别和分析其二级代谢产物,这将非常有助于治疗各种疾病和制药行业的新药物生产。将隔离来自植物的进一步生物活性成分,这些成分最终可能应用于药物。关键字:定性和定量,次生代谢产物和mirabilis viscosa。
结果:数据库包括73342个条形码,分为来自101个国家 /地区的5310个垃圾箱(物种代理)。哥斯达黎加贡献了所有条形码序列的近一半,而将近50个国家 /地区的条形码少于十个。只有五个国家,哥斯达黎加,加拿大,南非,德国和西班牙,尽管条形码数据库涵盖了大多数主要的分类学和生物地理位置上的谱系,但采样了很高的完整性。pd显示出中度饱和度,因为一个国家添加了更多的物种多样性,并且社区系统发育表明国家动物群的聚类。然而,在物种层面,即使在最激烈的采样国家中,库存仍然不完整,并且对全球物种丰富度模式的评估不足。
糖尿病的特征是长期高血糖,是一种慢性代谢疾病。1 2021年全球糖尿病患病率估计为10.5%,预计到2045年增加到12.2%。印度尼西亚是糖尿病病例数量最多的10个国家之一,据报道,全国有1,950万人患有糖尿病。2印尼基本健康研究(Riset Kesehatan Dasar / Riskesdas)发现,大约8.5%的印尼人符合糖尿病的诊断标准。3如果未治疗,糖尿病会对心脏,血管,眼睛,肾脏和神经造成严重的并发症1。在2019年估计全球直接健康成本为7600亿美元,预计到2030年将增加到8250亿美元,4糖尿病是全球经济损失,死亡率和残疾的主要原因之一。经济负担也受到患者的经济负担,糖尿病的护理费用比没有并发症的糖尿病高三倍。微血管并发症的护理成本也是没有并发症的糖尿病护理费用的两倍。这些增加的成本是由于住院延长,口服抗糖尿病药物和胰岛素治疗增加以及更多的门诊就诊。5当前的血糖控制剂主要包括化学剂,例如Biguanides,sulfonylureas和Thiasolidediones,通常会导致各种不良不良事件,包括乳酸酸中毒,体重增加和低血糖症,影响患者的生活质量。8,9 *通讯作者。6,7这些化合物的疗效也随着疾病的进展而降低,需要联合疗法或改用更有效的药物,例如胰岛素,胰岛素的平均价格在近年来飙升。e邮件:sry.suryani@usu.ac.id电话:+62 8116551936引用:Widjaja SS,Rusdiana,Savira M,Jayalie M,Jayalie VF,Dewi M. Basil Leaf提取物对糖尿病的影响:系统审查和荟萃分析。
收到日期:2024 年 8 月 17 日;接受日期:2024 年 12 月 9 日 ______________________________________________________________________________ 摘要 蠕虫感染影响着全球近 15 亿人,尤其是在热带和亚热带地区,贫困、住房不足和卫生条件差加剧了其影响。这些感染造成了严重的健康和经济负担,目前驱虫药物的有限效果凸显了对替代治疗方法的需求。龙眼传统上用于各种形式的药物,富含生物活性化合物,如黄酮类化合物、单宁和皂苷,已知它们具有抗寄生虫特性。本研究评估了龙眼乙醇叶提取物对猪肉带绦虫的驱虫潜力,旨在探索其作为治疗蠕虫感染的天然药物的用途。提取物的测试浓度为 25、50、100 和 200 mg/mL。与哌嗪柠檬酸盐 (10 mg/mL) 一起用于从刚屠宰的猪身上获得的成年绦虫。通过记录蠕虫瘫痪和死亡的时间来测量驱虫活性。提取物表现出显着的浓度依赖性作用,较高浓度(100 和 200 mg/mL)显示出与哌嗪柠檬酸盐相当的功效,对绦虫表现出强烈的麻痹作用但较弱的致死作用。研究结果表明,龙眼乙醇叶提取物具有强效驱虫特性,使其成为治疗蠕虫感染的有前途的天然替代品。 关键词:驱虫活性;龙眼;猪肉绦虫;绦虫;哌嗪柠檬酸盐 ______________________________________________________________________________ 介绍
I.引言该香蕉厂据报道起源于东南亚,现在在包括非洲在内的世界其他地区占主导地位(Heuze and Tran,2016年)。它的叶子很大,柔软,具有独特的形状,这使其非常适合各种应用。这些多功能且可用的叶子已在世界上许多文化中用于多个世纪以来。在许多国家,例如印度,泰国,马来西亚和菲律宾,传统上用来烹饪,提供食物和包装各种物品。香蕉叶提取物源自在Musaceae家族中发现的草本香蕉植物的叶子,分为Musa sapientum。他们特别属于Musa,Musella和Ensete属(Probojati et al。,2021)。人类消耗的流行物种是Musa Acuminata和M. Balbisiana,它们产生了各种各样的香蕉,颜色,品味和营养含量不同(Venkataramana等人(Venkataramana等)。香蕉含有丰富的生物活性化合物组成,包括多酚,类黄酮,单宁和其他植物化学物质。这些化合物以其潜在的健康益处而闻名,并以其抗氧化,抗炎,抗菌和抗癌特性进行了研究(Afzal等,2022)。它还富含钾,镁,维生素A,B和C(Oyeyeyinka和Afolayan,2019年)。香蕉叶提取物的显着应用之一是在传统医学中。Musa spp的叶子,茎和花提取物。对健康细胞没有明显的细胞毒性,表明在阿育吠陀(Ayurveda),印度传统医学实践中,据信香蕉叶具有针对糖尿病,高血压,伤口感染,皮肤疾病,消化系统疾病和呼吸道疾病的生物学活动(Kumar等,2012; Jyothirmayi和Rao,2015)。穆萨属的不同植物部分,例如茎汁,花朵和水果,已在各种培养物中用于传统医学中,以治疗腹泻,溃疡和蛇位(Rao等,2014; Kamira等,2015; Panda等,2020)。
枫叶食品公司未来在能源效率方面的一个更雄心勃勃的发展体现在完成了由加拿大自然资源部部分资助的一项工艺集成研究。作为其积极进取的典型做法,该公司计划在整个组织内推广工艺集成。工艺集成远远超出了传统的能源审计。它系统而严格地审视了设施中能源使用的所有方式以及不同系统之间的相互作用。它为工程师提供了一种方法来识别工艺中的低效率并选择最佳改进机会。
文章历史记录:24-045收到:20024年5月12日修订:21-JUL-20124被接受:2024年7月27日,摘要Clcuv是对全球棉花生产的威胁。棉花叶卷曲疾病是中国,巴基斯坦,印度,菲律宾和泰国等棉花生产国的风险。该病毒负责降低产量,以及骨数量及其体重的减少以及植物尺寸的总体减少。clcud是由单核病毒以及Alpha和Beta卫星引起的。有许多Clcuv菌株,例如棉叶卷曲的Kokhran病毒(Clcukov),棉叶卷曲的Alabad病毒(Clcualv),棉花叶卷卷拉贾斯坦病毒(Clcurav),棉质叶卷曲curl Multan病毒(clcumuv),棉质叶叶curl gezir gezira virus。粉虱,bemisia tabaci负责Clcud的转移。可以进行无数的测量,以最大程度地减少病毒对棉花植物的影响,去除替代寄主,早期播种,使用适当的肥料来健康植物生长,农药消除有害生物的种群(白蝇)。还设计了一些遗传学和生物技术方法来控制和发展对病毒的抗性。此外,可以通过CRISPR-CAS技术通过病原体衍生的抗性或基因编辑来产生转基因品种来产生抗性。将来,我们将能够生产具有更好抵抗疾病和更好产量的新植物品种。在本综述中讨论了Clcuv蔓延所涉及的遗传成分,其向量,传播,受影响区域,不同的菌株和管理策略。关键词:clcuv,遗传成分,α-卫星,β卫星,bemisia tabaci,管理
图3-11:MATLAB SIMULINK模拟设计的电池。 .................... 40 Figure 3-12 MATLAB SIMULINK simulation of battery comparison. ................. 41 Figure 3-13: SOC results of comparison simulation................................................ 42 Figure 3-14: OCV results of first order RC batteries comparison. ...............................................................................................................................................................................................................................................................................................................................................................................................二阶RC电池比较的OCV结果。 ..................... 43 Figure 4-1 Traditional bridge-type PWM inverter. (a)拓扑。 (b)波形[30]。 .......................................................................................................................... 45 Figure 4-2 LC Filter equivalent circuit. ................................................................... 46 Figure 4-3: The V2L electrical circuit. .................................................................... 49 Figure 4-4: The equivalent circuit of the V2L system. ............................................ 49 Figure 4-5 Bode Plot of the voltage plant. ............................................................... 52 Figure 4-6: Bode Plot of the current plant. .............................................................. 53 Figure 4-7 the block diagram of the outer voltage control loop with the inner current loop. .......................................................................................................................... 54 Figure 4-8: MATLAB SIMULINK simulation of complete system. .................................................... 57 Figure 4-11 Inductor current result of the system. 。图3-11:MATLAB SIMULINK模拟设计的电池。.................... 40 Figure 3-12 MATLAB SIMULINK simulation of battery comparison.................. 41 Figure 3-13: SOC results of comparison simulation................................................ 42 Figure 3-14: OCV results of first order RC batteries comparison................................................................................................................................................................................................................................................................................................................................................................................................二阶RC电池比较的OCV结果。 ..................... 43 Figure 4-1 Traditional bridge-type PWM inverter. (a)拓扑。 (b)波形[30]。 .......................................................................................................................... 45 Figure 4-2 LC Filter equivalent circuit. ................................................................... 46 Figure 4-3: The V2L electrical circuit. .................................................................... 49 Figure 4-4: The equivalent circuit of the V2L system. ............................................ 49 Figure 4-5 Bode Plot of the voltage plant. ............................................................... 52 Figure 4-6: Bode Plot of the current plant. .............................................................. 53 Figure 4-7 the block diagram of the outer voltage control loop with the inner current loop. .......................................................................................................................... 54 Figure 4-8: MATLAB SIMULINK simulation of complete system. .................................................... 57 Figure 4-11 Inductor current result of the system. 。...............................................................................................................................................................................................................................................................................................................................................................................................二阶RC电池比较的OCV结果。..................... 43 Figure 4-1 Traditional bridge-type PWM inverter.(a)拓扑。(b)波形[30]。.......................................................................................................................... 45 Figure 4-2 LC Filter equivalent circuit.................................................................... 46 Figure 4-3: The V2L electrical circuit..................................................................... 49 Figure 4-4: The equivalent circuit of the V2L system............................................. 49 Figure 4-5 Bode Plot of the voltage plant................................................................ 52 Figure 4-6: Bode Plot of the current plant............................................................... 53 Figure 4-7 the block diagram of the outer voltage control loop with the inner current loop........................................................................................................................... 54 Figure 4-8: MATLAB SIMULINK simulation of complete system..................................................... 57 Figure 4-11 Inductor current result of the system.。...................... 55 Figure 4-9: Output voltage result of the system....................................................... 56 Figure 4-10: Output current result of the system.................................................... 57 Figure 4-12: PWM Waveforms of the system.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................. 58图4-14输出和参考电压....................................................................................................................................... 60 Figure 5-2: Experimental Setup............................................................................... 61 Figure 5-3: Experimental setup; (1)variac,(2)3-φ整流器,(3)控制器,(4)电阻载荷,(5)逆变器,(6)DSP板和电平换挡器电路,(7)示波器,(8)LC滤波器。..................................................................................... 61 Figure 5-4: The connection diagram of the F28335 processor and the level shifter................................................................................................................................... 63 Figure 5-5: Experimental Setup Connection of DSP board and the Level Shifter.64图5-6:无过滤器的逆变器的输出电压。...................................... 65 Figure 5-7: Load voltage and current....................................................................... 66 Figure 5-8: Load Voltage.............................................................................................................................................................................. 71........................................................................................ 66 Figure 5-9 Transient Current and Voltage of Kettle ................................................ 67 Figure 5-10 Transient Current and Voltage of Microwave ..................................... 67 Figure 5-11 Steady-State Current and Voltage of Kettle ......................................... 68 Figure 5-12 Steady-State Current and Voltage of Microwave ................................ 68 Figure 6-1 CHAdeMO Connector and Pin Layout [45].