结构和地层捕获:CO 2以类似于天然气的方式物理捕获在不可渗透的岩石层下。残留捕获:CO 2分子由于毛细管而被困在岩石的孔隙中。溶解度捕获:地下水中溶解的CO 2形成了一种略密度的溶液,该溶液向下移动,远离大气。
摘要。在侧通道测试中,当VENDOR可以提供测量以指示加密算法的执行时间时,标准时序分析有效。在本文中,我们发现功率/电磁通道中存在时机泄漏,这在传统的计时分析中通常被忽略。因此,提出了一种新的定时分析方法,以处理无法使用执行时间的情况。不同的执行时间会导致不同的执行间隔,从而影响了明文和密文传输的位置。我们的方法通过研究将迹线向前和向后对齐时,通过研究明文相关性的变化来检测时间泄漏。然后,在不同的加密设备上进行实验。此外,我们提出了一个改进的时间分析框架,该框架为不同场景提供了适当的方法。
量子纠错 (QEC) 代码可以通过使用冗余物理量子位编码容错逻辑量子位并使用奇偶校验检测错误来容忍硬件错误。当量子位离开其计算基础并进入更高能量状态时,量子系统中会发生泄漏错误。这些错误严重限制了 QEC 的性能,原因有两个。首先,它们会导致错误的奇偶校验,从而混淆对错误的准确检测。其次,泄漏会扩散到其他量子位,并随着时间的推移为更多错误创造途径。先前的研究通过使用修改 QEC 代码奇偶校验电路的泄漏减少电路 (LRC) 来容忍泄漏错误。不幸的是,在整个程序中始终天真地使用 LRC 并不是最优的,因为 LRC 会产生额外的两量子位操作,这些操作 (1) 促进泄漏传输,并且 (2) 成为新的错误源。理想情况下,只有在发生泄漏时才应使用 LRC,以便同时最小化泄漏和额外 LRC 操作产生的错误。然而,实时识别泄漏错误具有挑战性。为了能够稳健而高效地使用 LRC,我们提出了 ERASER,它推测可能已泄漏的量子比特子集,并且仅对这些量子比特使用 LRC。我们的研究表明,大多数泄漏错误通常会影响奇偶校验。我们利用这一见解,通过分析失败的奇偶校验中的模式来识别泄漏的量子比特。我们提出了 ERASER+M,它通过使用可以将量子比特分类为 | 0 ⟩ 、 | 1 ⟩ 和 | 𝐿 ⟩ 状态的量子比特测量协议更准确地检测泄漏来增强 ERASER。与始终使用 LRC 相比,ERASER 和 ERASER+M 分别将逻辑错误率提高了多达 4.3 × 和 23 ×。
近年来,电子技术的突破使金属氧化物半导体场效应晶体管 (MOSFET) 的物理特性不断提升,尺寸越来越小,质量和性能也越来越高。因此,生长场效应晶体管 (GFET) 因其优异的材料特性而被推崇为有价值的候选者之一。14 nm 水平双栅极双层石墨烯场效应晶体管 (FET) 采用高 k 和金属栅极,分别由二氧化铪 (HfO 2 ) 和硅化钨 (WSi x ) 组成。Silvaco ATHENA 和 ATLAS 技术计算机辅助设计 (TCAD) 工具用于模拟设计和电气性能,而 Taguchi L9 正交阵列 (OA) 用于优化电气性能。阈值电压 (V TH ) 调整注入剂量、V TH 调整注入能量、源极/漏极 (S/D) 注入剂量和 S/D 注入能量均已作为工艺参数进行了研究,而 V TH 调整倾斜角和 S/D 注入倾斜角已作为噪声因素进行了研究。与优化前的初始结果相比,I OFF 值为 29.579 nA/µm,表明有显著改善。优化技术的结果显示器件性能优异,I OFF 为 28.564 nA/µm,更接近国际半导体技术路线图 (ITRS) 2013 年目标。
连续变量(CV)系统在实现通用量子计算的实现中引起了越来越多的关注。最近的一些实验表明,使用CV系统将值编码为捕获的离子机械振荡器并执行逻辑门的可行性[C. C. Flühmann等。,自然(伦敦)566,513(2019)]。必不可少的下一步是保护编码的量子函数免受量子反应的影响,例如,由于机械振荡器及其环境之间的相互作用而引起的运动反应性。在这里,我们提出了一种方案,以抑制单模谐波振荡器的量子反应性,该方案是通过引入非逆势泄漏消除操作员(LEO)的特定设计来编码Qubits的。值得注意的是,我们的非扰动狮子座可用于分析无近似值的精确运动方程。它还允许我们证明这些LEO的有效性仅取决于时间域中的脉冲序列的积分,而脉冲形状的详细信息在适当选择时间段时并没有显着差异。此控制方法可以在任意温度和任意系统轴耦合强度下应用于系统,这使其对于一般的开放量子系统非常有用。
该项目由天然气行业社会和环境研究联盟 (GISERA) 提供支持。CSIRO 的天然气行业社会和环境研究联盟 (GISERA) 是 CSIRO、联邦政府和州政府以及行业之间的合作,旨在开展公开报告的独立研究。GISERA 的目的是让 CSIRO 为生活在天然气开发地区的社区提供有质量保证的科学研究和信息,重点关注社会和环境主题,包括:地下水和地表水、生物多样性、土地管理、海洋环境、人类健康影响和社会经济影响。GISERA 的治理结构旨在提供和保护研究独立性和研究成果的透明度。有关更多信息,请访问 www.gisera.csiro.au
氢管道(HPL)是实现氢社会的氢运输系统之一。HPL氢泄漏是一个挑战,因为氢具有较宽的易燃范围和低最小点火能。因此,必须迅速检测到HPL的氢泄漏,应采取适当的动作。泄漏检测对于HPL的安全操作很重要。HPL的基本泄漏检测方法涉及监视传感器的压力和流速值。但是,在某些情况下,很难使用此方法区分非泄漏和泄漏条件。在这项研究中,我们根据压力和流速数据之间的关系,将使用机器学习(ML)的泄漏检测方法重点关注。将基于ML的泄漏检测方法应用于HPL面临两个挑战。首先,在过程设计阶段,ML的操作数据不足。其次,由于泄漏不经常发生,因此很难在氢泄漏过程中获得压力和流速行为。因此,这项研究采用了一种基于使用HPL物理模型模拟的数据,采用了一种无监督的ML方法。首先,构建了HPL(HPL模型)的物理模型,并根据数据
2 佛罗伦萨大学物理与天文系,via G. Sansone 1, Sesto F.no (FI),意大利 3 INFN – 佛罗伦萨分部,via G. Sansone 1, Sesto F.no (FI),意大利 4 斯坦福大学物理系和 Kavli 粒子天体物理与宇宙学研究所,452 Lomita Mall, Stanford, CA 94305, USA 5 INFN – 比萨分部,Largo Bruno Pontecorvo 3, 56127 Pisa (PI),意大利 6 比萨大学物理系,Largo Bruno Pontecorvo 3, 56127 Pisa (PI),意大利 7 马里兰大学巴尔的摩分校,620 W. Lexington St., MD 21250, USA 8 美国国家航空航天局戈达德太空飞行中心,8800 Greenbelt Rd., Greenbelt, MD 20771, USA 9 中心美国国家航空航天局/戈达德太空飞行中心空间科学与技术研究与探索中心,8800 Greenbelt Rd.,Greenbelt,MD 20771,美国 10 美国国家航空航天局马歇尔太空飞行中心,4600 Rideout Rd.,Huntsville,AL 35812,美国
摘要 — 近年来,用户通过云访问量子计算机的能力迅速提升。尽管现代量子计算机仍然是嘈杂的中型量子 (NISQ) 机器,但现在正被大量研究和初创公司积极采用。量子算法通常产生概率结果,需要重复执行才能产生所需的结果。为了使执行每次都从指定的基态开始,并且前一次执行的结果不会干扰后续执行的结果,必须在每次迭代之间执行重置机制以有效重置量子位。然而,由于量子计算机中的噪声和错误,特别是这些重置机制,嘈杂的重置操作可能会导致整个计算中的系统性错误,以及信息泄露的潜在安全和隐私漏洞。为了解决这个问题,我们彻底研究了量子计算中的状态泄漏问题,然后提出了一种解决方案,即在重置机制之前使用经典和量子一次性密码本来防止状态泄漏,其工作原理是随机地为电路的每次执行应用简单的门。此外,本研究还探讨了使用资源较少的经典一次性密码本足以防止状态泄漏的条件。最后,我们通过评估不同门、测量和采样误差水平下的泄漏程度,研究了各种错误在状态泄漏中的作用。我们的研究结果为复位机制和安全量子计算系统的设计提供了新的视角。
