背景和目标:由于失去随访的患者的数量,纵向研究中缺少数据是一个无处不在的问题。内核方法通过成功管理非矢量预测因子(例如图形,字符串和概率分布)来丰富机器学习场,并成为分析由现代医疗保健诱导的复杂数据的有希望的工具。此pa-提出了一组新的内核方法,以处理响应变量中缺少的数据。这些方法将用于预测糖化血红蛋白(A1C)的长期变化,这是用于诊断和监测糖尿病进展的主要生物标志物,以探索探索连续葡萄糖(CGM)的预测潜力。
背景:静息态功能性磁共振成像 fMRI (rs- fMRI) 已广泛用于研究精神疾病的大脑功能,从而深入了解大脑组织。然而,rs-fMRI 数据的高维性给数据分析带来了重大挑战。变分自动编码器 (VAE) 是一种神经网络,在提取静息态功能连接 (rsFC) 模式的低维潜在表示方面发挥了重要作用,从而解决了 rs-fMRI 数据的复杂非线性结构。尽管取得了这些进展,但解释这些潜在表示仍然是一个挑战。本文旨在通过开发可解释的 VAE 模型并使用 rs-fMRI 数据在自闭症谱系障碍 (ASD) 中测试其效用来解决这一差距。
方法:回顾性纳入了 62 名接受 FDOPA PET 和 MRI 检查的未接受治疗的胶质瘤患者。对比增强 T1 加权图像、T2 加权图像、液体衰减反转恢复图像、表观扩散系数图和相对脑血容量图以及 FDOPA PET 图像用于体素特征提取。使用无监督两级聚类方法,包括自组织映射和 K 均值算法,并将每个类标签应用于原始图像。将肿瘤区域内每个类的标签对数比应用于支持向量机以区分 IDH 突变状态。计算受试者工作特征曲线的曲线下面积 (AUC)、准确度和 F1-socore,并将其用作性能指标。
自然语言处理(NLP)和机器学习(ML)领域的最新发展已显示自动文本处理的显着改进。同时,人类语言的表达在发现心理健康问题中起着核心作用。虽然口语在接受患者的访谈中被隐式评估,但书面语言也可以为临床专业人员提供有趣的见解。现有的工作中经常研究心理健康问题,例如抑郁或焦虑。然而,还在研究饮食失调的诊断如何从这些新技术中受益。在本文中,我们介绍了该领域最新研究的系统概述。Our investigation encompasses four key areas: (a) an analysis of the metadata from published papers, (b) an examination of the sizes and speci fi c topics of the datasets employed, (c) a review of the application of machine learning techniques in detecting eating disorders from text, and fi nally (d) an evaluation of the models used, focusing on their performance, limitations, and the potential risks associated with current methodologies.
- “心律失常检测” - “心电图心律失常” - “室性心律失常” - “室上性心律失常” - “早搏” - “心脏传导阻滞” - “心动过缓” - “心动过速” - “12 导联心电图” - “心脏信号处理” - “心电图中的深度学习” - “CNN” - “DNN” - “LSTM” - “Transformers” - “混合模型”
渔业旁观,与商业或娱乐性的未经使用或未托管的物种的相互作用(Davies等,2009)对许多物种产生负面影响,包括死亡率,使旁观者的减少成为海洋保护和薄纱管理的主要重点2018; Nelms等人,2021年;当旁观物包含受保护的物种,例如海洋哺乳动物,海龟,鲨鱼和海鸟(Moore等,2009; Wallace等,2013; Lewison et al。,2014; Komoroske and Lewison和2015; 2015; 2015; 2015; 2015年;降低旁观可以提高商业曲折的效率和有效性(Richards等,2018; Noaa Fisheries,2022; Senko等,2022),并限制了由于高水平的受保护物种相互作用而导致的填充风险。然而,鉴于大多数bychip的物种的相互作用率低以及受保护物种相互作用的稀有发生率的较低相互作用率,估计杂草捕获的水平可能具有挑战性(McCracken,2004;Amandè等,2012; Martin等,2015; 2015年; Stock等,2019)。渔业管理计划和法规通常需要估算和监视给定层中给定物种的兼容量。根据管辖区的不同,过度的旁观,定义不同,可能会导致调整习惯的监管变化,弯曲齿轮的变化,限制性活动的限制或整个封闭式封闭。1362)。因此,准确,准确地确定在填充中旁观的水平的能力是填充管理的关键组成部分。在美国,《马格努森 - 斯文森渔业保护与管理法》(MSA),濒危物种法(ESA)和海洋哺乳动物保护法(MMPA)(MMPA)适用于旁观物种和填充物,并要求管理机构来监视旁注。在MSA(50CFR§600.350)下,应最小化或避免征用,而受保护的物种兼容不能超过ESA(50 CFR 216.3)下的允许采取或超过MMPA下潜在的生物移除水平(U.S.C.通常,为了实现旁观监测目标,训练有素的钓鱼者观察者被放置在钓鱼容器上,以监视受保护的物种相互作用,并记录捕获和旁捕虫(NOAA Fisheries,20222),因为这些信息不需要记录在日志中。这些观察者收集的数据用于通过各种统计或数学手段来估计填充中的兼例水平。在许多情况下,基于样本的比率估计器(例如广义比率估计器或Horvitz-Thompson估计器)可以提供对旁观的无偏估计(McCracken,2000,2019)。还实施了基于模型的估计,包括通用线性模型(GLM),零插入模型,跨栏模型,贝叶斯模型和广义添加剂模型(GAMS),以说明少数协变量对纤维状雪橇的影响(McCracken,2004; Martin等; Martin等,2015; 2015年; 2015年;从这种方法中估算的临界估计,然后进一步介绍了在给定时期内(通常为一年)对某些物种的兼容限制的过程(Moore等,2009),以及其他下游产品和
当政府图纸、规格或其他数据用于与政府明确相关的采购无关的任何目的时,美国政府不承担任何责任或义务。政府可能已经制定或以任何方式提供上述图纸、规格或其他数据,但不应被视为
背景:已提出合成计算机断层扫描(SCT),并越来越多地采用以实现基于磁共振成像(MRI)的放射疗法。深度学习(DL)最近证明了从固定MRI采集中生成准确的SCT的能力。但是,由于模型概括不良,MRI方案可能会随着时间的推移而随着时间的流逝而变化或不同。目的:研究域随机化(DR)以增加脑SCT生成DL模型的概括。方法:收集了95例接受RT患者的CT和相应的T 1加权MRI,带有 /无对比度,T 2加权和FLAIR MRI,考虑到可以研究概括的未见序列的能力。“基线”生成对抗网络进行了 /没有天赋序列的训练,以测试模型在没有DR的情况下的性能。基于SCT的剂量计划的图像相似性和准确性对CT进行了评估,以选择针对基线的表现最佳的DR方法。结果:基线模型在FLAIR上的性能最差,平均绝对误差(MAE)= 106±20.7 HU(平均值±σ)。在MAE = 99.0±14.9 HU的DR模型中,Flair上的性能显着提高,但仍然不如基线 + Flair模型的性能(MAE = 72.6±10.1 HU)。同样,对于DR VS基线,获得了γ速率的提高。结论:DR提高了仅在获得的MRI上训练的未见序列上的图像相似性和剂量准确性。DR使模型更加稳健,从而减少了在未见序列上应用模型时重新训练的需求,并且无法进行重新训练。
抽象机器学习(ML)实验管理工具在构建智能软件系统时支持ML从业人员和软件工程师。通过管理大量ML实验,包括许多不同的ML资产,它们不仅促进了工程师的ML模型和支持ML的系统,而且还可以管理其演变,例如,在模型性能漂移时将系统行为追溯到具体实验。但是,尽管ML实验管理工具越来越流行,但对它们在实践中的有效性以及实际的好处和挑战知之甚少。我们介绍了实验管理工具及其提供给用户的支持的混合方法。首先,我们对81名ML从业者的调查试图确定ML实验管理和现有工具景观的好处和挑战。第二,对15名学生开发人员进行了对照实验,研究了ML实验管理工具的有效性。我们了解到,有70%的调查受访者使用专用工具进行了ML实验,而在不使用此类工具的人中,有52%的人不知道实验管理工具或其好处。受控实验表明,实验管理工具为用户提供了有价值的支持,以系统地跟踪和检索ML资产。使用ML实验管理工具降低了错误率和提高的完成率。通过介绍用户对实验管理工具的看法以及该领域的第一个受控实验,我们希望我们的结果在实践中促进了这些工具的采用,以及他们指导工具建设者和研究人员改善工具景观的整体。