1. Anderson, LW 和 Krathwohl, DR (2001)。《学习、教学和评估分类法》,精简版。波士顿,马萨诸塞州:Allyn and Bacon。2. Biggs, J.、Tang, C. 和高等教育研究学会。(2011)。《大学优质学习教学:学生在做什么》,宾夕法尼亚州费城:McGraw-Hill/高等教育研究学会;英国伯克郡梅登黑德;纽约:开放大学出版社。(可从 SMU 图书馆借阅)3. Smaldino, S.、Lowther, D. 和 Russell, J.(2007)。《教学媒体与学习技术》,第 9 版。Englewood Cliffs:Prentice Hall, Inc。
随着全球人口的增长和对粮食的需求不断增加,农业生产面临着巨大的压力。与此同时,气候变化和资源限制加剧了这些挑战,进一步凸显了对可持续农业实践的需求。为了解决这些复杂的问题,植物科学领域正在经历一场技术革命。人工智能 (AI)、计算机视觉和机器人技术的快速发展正在重新定义植物的研究方式和农业实践的管理方式。从高通量表型到精准农业和实时监测,这些技术正在显著提高效率和准确性,为更具弹性和可持续性的农业系统奠定基础。本研究主题汇集了开创性的研究,以展示人工智能如何推动植物科学的发展并为现代农业提供创新解决方案。
背景和目标:由于失去随访的患者的数量,纵向研究中缺少数据是一个无处不在的问题。内核方法通过成功管理非矢量预测因子(例如图形,字符串和概率分布)来丰富机器学习场,并成为分析由现代医疗保健诱导的复杂数据的有希望的工具。此pa-提出了一组新的内核方法,以处理响应变量中缺少的数据。这些方法将用于预测糖化血红蛋白(A1C)的长期变化,这是用于诊断和监测糖尿病进展的主要生物标志物,以探索探索连续葡萄糖(CGM)的预测潜力。
我相信,在个人学习方面,人工智能作为传统教育方法的补充具有巨大潜力。然而,除了潜力之外,人工智能的快速发展还引发了许多道德问题,这些问题往往解决得太晚,而且程度有限。
抽象机器学习(ML)实验管理工具在构建智能软件系统时支持ML从业人员和软件工程师。通过管理大量ML实验,包括许多不同的ML资产,它们不仅促进了工程师的ML模型和支持ML的系统,而且还可以管理其演变,例如,在模型性能漂移时将系统行为追溯到具体实验。但是,尽管ML实验管理工具越来越流行,但对它们在实践中的有效性以及实际的好处和挑战知之甚少。我们介绍了实验管理工具及其提供给用户的支持的混合方法。首先,我们对81名ML从业者的调查试图确定ML实验管理和现有工具景观的好处和挑战。第二,对15名学生开发人员进行了对照实验,研究了ML实验管理工具的有效性。我们了解到,有70%的调查受访者使用专用工具进行了ML实验,而在不使用此类工具的人中,有52%的人不知道实验管理工具或其好处。受控实验表明,实验管理工具为用户提供了有价值的支持,以系统地跟踪和检索ML资产。使用ML实验管理工具降低了错误率和提高的完成率。通过介绍用户对实验管理工具的看法以及该领域的第一个受控实验,我们希望我们的结果在实践中促进了这些工具的采用,以及他们指导工具建设者和研究人员改善工具景观的整体。
对技术解决技术的问题的简要描述旨在为幼儿园和小学的教师提供一种工具,以研究与社会情感学习和群体情感氛围有关的概念。实际上,这项研究强调了在学校课程中插入社会情感学习的重要性,为学生提供了与表达,认可和调节情绪有关的技能发展的发展。研究还表明,教师如何对将社会情感学习融入其教育计划以及技术如何帮助传达这些概念的想法表示关注。<挖掘变革利用了有形技术的潜力,根据参考文献,这些技术能够刺激用户的好奇心和参与度。优势该技术提出了以下优点:
评估心脏骤停后昏迷患者的神经功能完整性仍是一个悬而未决的挑战。昏迷结果的预测主要依赖于专家对生理信号的视觉评分,这种方法容易产生主观性,并使相当多的患者处于预后不确定的“灰色地带”。对听觉刺激后脑电图反应的定量分析可以让我们了解昏迷时的神经功能以及患者苏醒的机会。然而,由于协议繁琐多样,标准化听觉刺激后的反应还远未在临床常规中使用。在这里,我们假设卷积神经网络可以帮助提取昏迷第一天对听觉刺激的脑电图反应的可解释模式,这些模式可以预测患者苏醒的机会和 3 个月后的存活率。我们使用卷积神经网络 (CNN) 对多中心和多方案患者队列中在标准化镇静和目标体温管理下昏迷第一天对听觉刺激的单次脑电图反应进行建模,并预测 3 个月时的结果。对于接受治疗性低温和常温的患者,使用 CNN 预测觉醒的阳性预测率分别为 0.83 ± 0.04 和 0.81 ± 0.06,预测结果的曲线下面积分别为 0.69 ± 0.05 和 0.70 ± 0.05。这些结果也持续存在于处于临床“灰色地带”的一部分患者中。网络预测结果的可信度基于可解释的特征:它与脑电图反应的神经同步性和复杂性密切相关,并受到独立临床评估的调节,例如脑电图反应性、背景爆发抑制或运动反应。我们的研究结果强调了可解释的深度学习算法与听觉刺激相结合在改善昏迷结果预测方面的巨大潜力。
chusnaapriyanti@gmail.com摘要此研究旨在了解教师教授英语,来源和方法的策略,以使学生保持对学习英语的兴趣。这是描述性定量研究。数据是从91名初中学生那里获取的,他们在学校接受了各种学习策略的英语课程和2名英语老师,他们向这些学生教英语。受访者是SMPN 2 Pacitan的英语老师和VIII级学生。数据是从6月9日至2023年6月13日收集的。研究人员通过执行以下步骤来收集数据:确定哪所学校将用作研究站点,决定使用数据收集的方式,制作观察工具,收集数据以及通过Google表格和访谈形式提交观察结果。结果表明,大多数学生(100%)认为自己学习英语意义重大,所有英语老师还使用各种策略来教授和激励学生学习英语。64%的学生发现使用词汇记忆策略很容易,而36%的学生发现使用词汇记忆策略具有挑战性。大多数老师(99%)激励和支持学生学习英语。根据学生,有趣且适合学习英语的媒体或方法使用媒体为40%,使用技术的31%,使用记忆词汇的17%和使用其他方法的12%。关键字:教师策略,方法,英语课简介在访谈中,英语老师提供了各种提供英语课程的方法,例如听英语音乐,看英语电影,记忆和使用PowerPoint来提供课程。
2 西北农林科技大学生命科学学院生物信息学中心、作物抗逆与高效生产国家重点实验室,陕西咸阳,3 西北农林科技大学农业部西北旱区玉米生物学与遗传改良重点实验室,陕西咸阳,4 俄罗斯科学院西伯利亚分院细胞学与遗传学研究所系统生物学系,俄罗斯新西伯利亚,5 俄罗斯帕特里斯·卢蒙巴人民友谊大学农业与技术学院,俄罗斯莫斯科,6 俄罗斯联邦卫生部莫斯科谢切诺夫第一国立医科大学(谢切诺夫大学)生物设计与复杂系统建模研究所信息与互联网技术系,俄罗斯莫斯科