药物化合物已成为废水中越来越重要的污染物来源,因为它是传统的处理方法无效地去除它们的方法,因此它们通常被放入环境中。可以使用液体液体提取成功去除药物,并且可以使用宇宙RS预测相互作用并识别最有前途的溶剂。但是,COSMO热模型无法解释关键过程参数,从而降低了这些计算模型的准确性。因此,需要替代计算方法来准确预测可以纳入处理和相互作用变量的药物的提取产率。这项工作使用机器学习来预测使用八种溶剂的11种药物的提取产率。探索了六个回归模型和两个分类模型。使用ANN回归器(测试MAE:4.510,测试R 2:0.884)和RF分类器(测试精度:0.938,测试召回:0.974)获得了最佳性能。RF回归分析和分类还显示了关键的提取产率特征:溶剂与喂养比,N - 辛烷 - 水分系数,氢键,氢键和范德华对多余的焓的贡献,以及pH距离至最近的PKA。机器学习显示为筛选和选择最有希望的溶剂和过程条件的绝佳工具,以从废水中去除药物。
多发性硬化症(MS)是中枢神经系统(CNS)的一种慢性炎症性疾病,被认为是遗传学与生活方式和环境因素的相互作用引起的复杂疾病。这项研究旨在确定通过使用机器学习模型有助于MS发展的遗传和环境风险因素之间的相互作用。这包括用于MS预测和随机森林,Rosetta和Logistic回归模型的逻辑回归模型,用于查找SNP与风险因素之间的相互作用。研究人群由1118个个体,5,615个,有MS和5,566个健康对照组成,并提供有关环境和生活方式暴露的遗传信息和问卷数据。遗传信息包括基因型数据,而问卷数据包括性别,20岁时BMI,吸烟习惯,暴露于阳光,单核细胞增多症状态和年龄。这项研究确定了可能与MS发展有关的潜在基因环境相互作用。这些相互作用的含义将需要在未来的研究中得到进一步验证。使用基于网络的方法确定了MS疾病模块,可用于进一步分析以鉴定涉及MS的中心基因。这项研究的结果可能会更好地了解疾病发育和发病机理,并有助于采取个性化干预措施,以最大程度地减少疾病发展的风险。
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
新辅助化学免疫性疗法已彻底改变了非小细胞肺癌(NSCLC)的治疗策略,并确定可能对这种先进治疗的候选者具有重要的临床意义。目前的多机构研究旨在开发一种深度学习模型,以预测基于计算机断层扫描(CT)成像的NSCLC中对新辅助免疫疗法的病理完全反应(PCR),并进一步探讨了拟议的深度学习签名的生物学基础。在2019年1月至2023年9月,总共有248名接受新辅助免疫疗法的参与者在Ruijin医院,Ningbo Hwamei医院接受NSCLC的手术,然后在Ruijin医院进行NSCLC手术和Zunyi医科大学的后医院。在新辅助化学免疫性疗法之前的2周内进行了成像数据。鲁伊因医院的患者被分为培训集(n = 104)和6:4比率的验证集(n = 69),而宁波·霍马伊医院(Ningbo Hwamei Hospital)和祖尼医科大学(Zunyi)医科大学的其他参与者则是外部队列(n = 75)。在整个人群中,在29.4%(n = 73)的病例中获得了PCR。我们对PCR预测深度学习签名曲线下的区域(AUC)为0.775(95%的置信间隔[CI]:0.649-0.901)和0.743(95%CI:0.618-0.869)的验证集和外部队列中的0.5%(95%)(95%)(95%)(95%)(95%)。临床模型的0.689)和0.569(95%CI:0.454-0.683)。此外,较高的深度学习评分与微环境中细胞代谢途径和更多抗肿瘤免疫的上调相关。我们开发的深度学习模型能够预测NSCLC患者的新辅助化学免疫性疗法。
VHS是排除或消除狗心脏病的有用工具(Guglielmini等人。2009)。 当可将二极管造影不可行时,VHS也可以用作识别B2期退行性瓣膜疾病患者的替代品,这是启动心脏疗法的阈值(ITO 2022)。 补充,随着时间的推移,VHS的绝对VHS和变化已被证明可以预测多项研究的心力衰竭开始(Boswood等人。 2016,2020)。 VHS确实具有一定的可变性来源。 两项荧光镜研究的平均变化在心脏周期的收缩期和舒张期之间的平均变化约为0.3至0.4。 在呼吸周期的灵感和外向阶段之间也可以平均变化0.2椎骨(Olive etal。 2015)。 最后,人类的可变性研究表明,不同读取器的平均差异约为0.4至1.0椎骨(Hansson等人。 2005)。 最近,用于支持兽医心脏病学临床诊断的计算机辅助算法的开发已经增加(Burti等人 2020,Li等。 2020)。 计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。 2021)。 此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。 2017)。 2021,Baisan&Vulpe 2022,Wiegel等。2009)。当可将二极管造影不可行时,VHS也可以用作识别B2期退行性瓣膜疾病患者的替代品,这是启动心脏疗法的阈值(ITO 2022)。补充,随着时间的推移,VHS的绝对VHS和变化已被证明可以预测多项研究的心力衰竭开始(Boswood等人。2016,2020)。VHS确实具有一定的可变性来源。两项荧光镜研究的平均变化在心脏周期的收缩期和舒张期之间的平均变化约为0.3至0.4。在呼吸周期的灵感和外向阶段之间也可以平均变化0.2椎骨(Olive etal。2015)。最后,人类的可变性研究表明,不同读取器的平均差异约为0.4至1.0椎骨(Hansson等人。2005)。 最近,用于支持兽医心脏病学临床诊断的计算机辅助算法的开发已经增加(Burti等人 2020,Li等。 2020)。 计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。 2021)。 此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。 2017)。 2021,Baisan&Vulpe 2022,Wiegel等。2005)。最近,用于支持兽医心脏病学临床诊断的计算机辅助算法的开发已经增加(Burti等人2020,Li等。 2020)。 计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。 2021)。 此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。 2017)。 2021,Baisan&Vulpe 2022,Wiegel等。2020,Li等。2020)。计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。2021)。此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。2017)。2021,Baisan&Vulpe 2022,Wiegel等。此外,可以根据狗品种,身体状况和心脏状况进行VHS测量的其他差异来源(Puccinelli等人。2022)。本研究的目的是评估使用简化的Sanchez方法的使用VHS算法的性能与使用Buchanan方法在三位董事会认证的兽医心脏病学家之间分配的1200个X光片相比,使用了1200个X射线照片。
ALN系统用IDP替换了有关学校行动/学校行动以及学习和技能计划(LSP)的学习者的现有支持计划(包括SEN的陈述,个人教育计划(IEPS))使用IDP。在确定25岁以下的儿童或年轻人的情况下,他们通常有权获得IDP,无论他们在哪里受过教育。上面的问题3描述了ALN系统何时以及如何为特定的儿童群体上线。
免疫系统中主要的组织相容性复合物(MHC)I类和II类分子的关键作用已得到很好的确定。本研究旨在开发一种新型的机器学习框架,用于通过MHC I类和II类分子预测抗原肽表现。通过整合大规模质谱数据和其他相关数据类型,我们基于深度学习提供了预测模型ONMIMHC。我们使用独立的测试集对其性能进行了严格的评估,ONMIMHC在MHC-I任务中的PR-AUC得分为0.854,Top20%-PPV为0.934,这表现优于现有方法。同样,在MHC-II预测的域中,我们的模型ONMIMHC的PR-AUC得分为0.606,TOP20%-PPV为0.690,表现出优于其他基线方法。这些结果证明了我们模型ONMIMHC在准确预测MHC-I和MHC-II分子之间的肽MHC结合后的优势。凭借其出色的准确性和预测能力,我们的模型不仅在一般的预测任务中出色,而且在预测新抗原针对特定癌症类型的新抗原方面也取得了显着的结果。特别是对于子宫菌群子宫内膜癌(UCEC),我们的模型成功地预测了新抗原,对普通人类等位基因具有很高的结合概率。这一发现对于开发针对UCEC的个性化肿瘤疫苗非常重要。
在大规模数据集训练的生成模型的最新进展使得可以合成各个领域的高质量样本。此外,强烈反转网络的出现不仅可以重建现实世界图像,还可以通过各种编辑方法对属性进行修改。,在与隐私问题有关的某些领域中,例如Human Faces,先进的生成模型以及强大的反转方法可能会导致潜在的滥用。在此过程中,我们提出了一个必不可少但探索的任务不足的任务,称为生成身份,该任务引导该模型不要生成特定身份的图像。在未经学习的生成身份中,我们针对以下内容:(i)防止具有固有身份的图像的产生,以及(ii)保留生成模型的整体质量。为了满足这些目标,我们提出了一个新颖的框架,对任何IDE NTITY(指南)进行了努力,该框架通过仅使用单个图像来删除发电机来阻止特定身份的重建。指南由两个部分组成:(i)找到一个优化的目标点,该目标点未识别源潜在代码和(ii)促进学习过程的新型损失函数,同时影响较小的学习分布。我们的广泛实验表明,我们提出的方法在通用机器学习任务中实现了最先进的性能。该代码可在https://github.com/khu-agi/guide上找到。
Calvino K. J. Chem。pharm。res。,2024,16(7):7-8毒理学,以发现趋势并预测新型化学物质的毒性。与常规
解决电子结构问题代表了量子计算机的一个有前途的应用领域。目前,人们投入了大量精力设计和优化近期量子处理器的量子算法,目的是使用有限的量子资源在选定的问题实例上超越经典算法。这些方法仍有望具有防止大规模和批量系统量子模拟的运行时间。在这项工作中,我们提出了一种策略,使用在量子模拟数据上训练的机器学习潜能将量子计算方法的范围扩展到大规模模拟。在当今的量子环境中应用机器学习潜能的挑战来自于影响电子能量和力的量子计算的几种噪声源。我们研究了选择各种噪声源的机器学习潜能的可训练性:统计、优化和硬件噪声。最后,我们从实际 IBM Quantum 处理器上计算的氢分子数据构建了第一个机器学习潜能。这已经使我们能够执行任意长且稳定的分子动力学模拟,优于所有当前分子动力学和结构优化的量子方法。