随着全球人口的增长和对粮食的需求不断增加,农业生产面临着巨大的压力。与此同时,气候变化和资源限制加剧了这些挑战,进一步凸显了对可持续农业实践的需求。为了解决这些复杂的问题,植物科学领域正在经历一场技术革命。人工智能 (AI)、计算机视觉和机器人技术的快速发展正在重新定义植物的研究方式和农业实践的管理方式。从高通量表型到精准农业和实时监测,这些技术正在显著提高效率和准确性,为更具弹性和可持续性的农业系统奠定基础。本研究主题汇集了开创性的研究,以展示人工智能如何推动植物科学的发展并为现代农业提供创新解决方案。
1. Anderson, LW 和 Krathwohl, DR (2001)。《学习、教学和评估分类法》,精简版。波士顿,马萨诸塞州:Allyn and Bacon。2. Biggs, J.、Tang, C. 和高等教育研究学会。(2011)。《大学优质学习教学:学生在做什么》,宾夕法尼亚州费城:McGraw-Hill/高等教育研究学会;英国伯克郡梅登黑德;纽约:开放大学出版社。(可从 SMU 图书馆借阅)3. Smaldino, S.、Lowther, D. 和 Russell, J.(2007)。《教学媒体与学习技术》,第 9 版。Englewood Cliffs:Prentice Hall, Inc。
实施,实验和结果38 5.1。软件实施38 5.1.1 TensorFlow 38 5.1.2 Pendulum驱动器38 5.1.3 Pendulum Environment 38 5.1.4 Raspberry Pi Software 39 5.1.5深钢筋学习39 5.2。硬件实现39 5.2.1带电机驱动器的Raspberry Pi 39 5.2.2带电机旋转编码器的Raspberry Pi 40 5.2.3 Raspberry pi搭配摆旋转旋转编码器40 5.3。实验实现和设置40 5.3.1环境40 5.3.2参数41 5.4。仿真结果42 5.4.1应用突然变化44
遥感和机器学习的技术和方法论进步为推进野生动植物调查创造了新的机会。我们组建了一个实践社区(COP),以利用这些发展,以探索从管理层的角度来提高空中野生动植物监测的效率和有效性。COP的核心目标是组织遥感和机器学习方法的开发和测试,以改善支持管理决策的空中野生动植物种群调查。从2020年开始,COP合作确定了由野生动植物调查数据所告知的自然资源管理决策,重点是水鸟和海洋野生动植物。我们调查了我们的会员资格以建立1)他们使用野生动植物数量数据的管理决定; 2)在遥感/机器学习方法出现之前,如何收集这些计数数据; 3)过渡到遥感/机器学习方法学框架的动力; 4)从业者过渡到此框架时面临的挑战。本文记录了这些发现,并确定了朝着基于遥感的野生动植物调查迈向野生动植物管理方面的研究优先级。
英国利兹大学利兹大学的地理学和水学院; B英国利兹大学土木工程学院B; C以色列贝特达根农业部土壤侵蚀研究站土壤保护部; D Kinneret Limnological实验室,以色列海洋学和林木研究,以色列米格达尔; E Zuckerberg水研究所,雅各布·布莱斯坦(Jacob Blaustein)的沙漠研究研究所,以色列内盖夫本·古里安大学; F Yorkshire Water Services Ltd,英国布拉德福德; G德国玛格德堡的Helmholtz环境研究中心水生生态系统分析与管理部; H英国伯明翰伯明翰大学地理,地球与环境科学学院; I IHCANTABRIA - 西班牙桑坦德市的de la la cantabria Instituto dehidráulicaInstituto; J布里斯托尔大学布里斯托尔大学工程,数学和技术学院J; K Escuela de Ingenieria y Ciencias,Tecnologico de Monterrey,墨西哥Nuevo
摘要 - 当今的商业格局的特点是竞争和动态,这将人力资源管理转变为组织的基本战略合作伙伴。员工营业额会带来影响生产力和知识管理的风险。本研究的重点是使用机器学习(ML)模型来预测员工的离职。在培训过程中,使用了一个由4410个记录和29个变量组成的数据集,在培训和评估十种模型的过程中,遵循了人工智能(AI)方法。调查结果表明,XG增强分类器(XGBC)和随机森林(RF)模型达到了最佳准确性和性能率,为98.8%和98.7%。Followed by Decision Tree Classifier (DT) with 97.6%, and the other models, such as Gradient Boosting Classifier (GBC), Ada boost Classifier (AC), Logistic Regression (LR), KN Classifier (K-NNC), SGD Classifier (SGDC), Support Vector Classifier (SVC) and Nu Support Vector Classifier (NuSVC), achieved the following费率:分别为88.4%,85.4%,84%,82.2%,83.0%,83.0%,55.0%。最后,可以得出结论,模型在预测中是有用且有效的。建议在人力资源管理策略中实施实际实施,以进行主动干预。
对于某些可区分的函数h:r d→r和d二维向量的总数。这种特征的示例包括例如总均值,比率或相关系数。这也称为有限的人口推断问题(Beaumont和Haziza 2022)。我们进一步假设n很大,每个单个实验的计算成本也是不可行的。在这种情况下,研究经常诉诸于子采样。亚采样方法在过去几年中的人口急剧增加。例如,MA,Mahoney和Yu(2015); Ma等。(2022)引入了大数据回归的杠杆采样,随后启发了逻辑回归的类似发展(Wang,Zhu,Zhu和Ma 2018; Yao and Wang 2019)广义线性模型(AI等人。2021b; Yu等。2022)和分位回归(Ai等人2021a; Wang,Peng和Zhao 2021)。同样,Dai,Song和Wang(2022)开发了
空间幻象技术的最新进展已实现了分析组织形态,细胞组成和生物分子表达模式的新方法。这些进步正在促进数字病理新兴领域中新的计算工具和定量技术的开发。在这篇综述中,我们调查了使用数字化的组织病理学幻灯片和补充材料开发用于空间映射的OMIC数据分析的计算方法的当前趋势,并重点介绍了与泌尿生殖学肿瘤学研究有关的工具和应用。评论包含三个部分:1)组织幻灯片分析的图像处理方法的概述; 2)与空间解决的OMIC数据分析的机器学习集成; 3)讨论当前局限性和未来在临床决策过程中整合机器学习的方向。
摘要 - 哥斯达黎加的教育必须思考并利用新的数字工具,例如聊天机器人,同时考虑相关的挑战和关注点以及它们的影响。哥斯达黎加教育部门的发展及其局限性可以反映出在该主题中拉丁美洲国家的限制,局限性和机会的模型。很少有关于CHATGPT及其在拉丁美洲的使用的研究,这是一项开创性的研究,可以导致许多未来关于生成人工智能的研究(AI)。对大学的关注提供了分析Chatgpt在教育领域的实际影响的机会。这项研究采用了定性探索方法,作为数据收集的方法是对教育和生成人工智能领域的学术数据库的文献计量学回顾,从而确定了代表研究现象的三个案例研究的识别,通过数据三角剖分,通过数据三角剖分,解释了研究对象的主要因素。结果支持Chatgpt,该研究通过改进学习过程,提供快速和个性化的答案并鼓励学生参与,对哥斯达黎加的教育产生积极影响。此外,我们提出了所有机构在教育体系的合作和执行之间的紧密结合:教育部长,中央政府,地方政府,大学,创新,非政府组织(NGOS),智囊团和国际组织。
2 西北农林科技大学生命科学学院生物信息学中心、作物抗逆与高效生产国家重点实验室,陕西咸阳,3 西北农林科技大学农业部西北旱区玉米生物学与遗传改良重点实验室,陕西咸阳,4 俄罗斯科学院西伯利亚分院细胞学与遗传学研究所系统生物学系,俄罗斯新西伯利亚,5 俄罗斯帕特里斯·卢蒙巴人民友谊大学农业与技术学院,俄罗斯莫斯科,6 俄罗斯联邦卫生部莫斯科谢切诺夫第一国立医科大学(谢切诺夫大学)生物设计与复杂系统建模研究所信息与互联网技术系,俄罗斯莫斯科