ex Cathedra讲座和微型注射器。ex catherdra:主要思想带有黑板上呈现的幻灯片和计算。每周都会为一次课堂运动中断前大教堂的讲座。讲座的第二部分需要此练习的结果。其他练习是作为家庭作业进行的,或者可以在第二个锻炼时间进行混乱。讲座也被几个简短的测验打断。miniProject:小型设备是在两个组成的团队中完成的,并从两个或三个小型设备的列表中选择。
糖尿病足溃疡(DFUS)是糖尿病最常见且高度残疾的并发症之一,其特征是持续的脚步溃疡具有高感染率和截肢的风险,对患者生活质量和公共卫生系统构成了重大挑战(1)。根据数据预测,到2030年,全球糖尿病人口估计约为4.39亿(2)。在糖尿病患者中,大约30%的人会在其一生中出现足球溃疡(3),其中一部分患者因溃疡恶化而受到截肢的风险。研究表明,到2050年,三分之一的美国人将患有糖尿病,多达34%的糖尿病患者将在其一生中发展糖尿病足溃疡(DFU)(4)。DFU是成年糖尿病患者的严重并发症(5),一生中约有19%-34%的人足性溃疡,随着患者的年龄和医疗保健的复杂性,这种风险会增加(6)。DFU可以导致严重的结果,例如感染,截肢和死亡,在3 - 5年内复发率为65%(7),截肢率为20%,5年死亡率高达50%-70%(8)。尽管在多学科预防和早期筛查方面取得了进步,但在某些地区,截肢率却有所提高,尤其是影响年轻个人和少数群体,突出了DFU管理中的差异和不平等现象(9)。此外,糖尿病患者的免疫功能降低并降低了感染性(10),进一步增加了与DFU相关感染的风险(11)。在这些机制中,持续的炎症反应和组织受损(12)被认为是DFU的进展中的关键驱动因素。最近的研究表明,CXCR4基因在诸如细胞迁移,炎症调节和组织修复等过程中起重要作用(13),并且CXCR4的异常表达被认为是多种慢性条件下疾病进展的驱动力(14,15)。cxcr4在各种细胞类型(16)中表达,并通过其配体CXCL12调节细胞迁移,增殖和炎症反应(17)。研究表明,CXCR4在诸如DFU之类的慢性伤口中异常表达,可能导致
摘要 - 哥斯达黎加的教育必须思考并利用新的数字工具,例如聊天机器人,同时考虑相关的挑战和关注点以及它们的影响。哥斯达黎加教育部门的发展及其局限性可以反映出在该主题中拉丁美洲国家的限制,局限性和机会的模型。很少有关于CHATGPT及其在拉丁美洲的使用的研究,这是一项开创性的研究,可以导致许多未来关于生成人工智能的研究(AI)。对大学的关注提供了分析Chatgpt在教育领域的实际影响的机会。这项研究采用了定性探索方法,作为数据收集的方法是对教育和生成人工智能领域的学术数据库的文献计量学回顾,从而确定了代表研究现象的三个案例研究的识别,通过数据三角剖分,通过数据三角剖分,解释了研究对象的主要因素。结果支持Chatgpt,该研究通过改进学习过程,提供快速和个性化的答案并鼓励学生参与,对哥斯达黎加的教育产生积极影响。此外,我们提出了所有机构在教育体系的合作和执行之间的紧密结合:教育部长,中央政府,地方政府,大学,创新,非政府组织(NGOS),智囊团和国际组织。
糖尿病足溃疡 (DFU) 是影响糖尿病患者的一种严重并发症,超过一半的 DFU 都有感染风险。在这些感染中,约 20% 需要截肢 (1、2)。这是一个值得关注的重要问题,因为因 DFU 而截肢的患者的死亡率很高,预计超过一半的患者会在五年内死亡 (3)。此外,治疗和管理 DFU 及其并发症的经济负担超过了五大癌症,仅在美国,每年的费用就超过 110 亿美元 (4)。随着糖尿病 (DM) 患病率的持续上升,DFU 预计将成为全球卫生系统的更大负担,并且可能是最昂贵的糖尿病并发症之一 (5)。尽管在确定 DFU 治疗的新疗法方面取得了显着进步,但对 DFU 的根本病因和管理的早期诊断仍然具有挑战性。 DFU 愈合受损是一种复杂的发病机制,由多种因素引起,包括糖尿病足部感染、伤口缺血、免疫系统衰竭和血糖控制不佳(6-8)。DFU 管理需要在多个时间点评估感染和缺血情况以便更好地管理,但由于其侵入性,目前这种方法受到限制。由于农村地区无法接触到 DFU 伤口中心和临床专家,这个问题更加严重。因此,临床对用于分析伤口感染和缺血检测的非侵入性工具的需求尚未得到满足,这两个关键因素是伤口愈合受损。近年来,深度学习算法在疾病的检测和诊断方面表现出巨大的潜力,特别是在医学成像、放射学和病理学方面(9-11)。这导致了深度学习图像分析作为一种辅助工具的出现,它支持临床医生进行决策,提高疾病诊断和治疗的效率和准确性(12)。深度学习在糖尿病足溃疡的分类和定位方面也显示出了良好的效果。它在缺血和感染分类方面取得了很高的准确率,分别为 87.5% 至 95.4% 和 73% 至 93.5%(13-16)。此外,研究人员在糖尿病足溃疡定位方面也取得了重大进展,平均精度 (mAP) 值在 0.5782 至 0.6940 之间,F1 分数在 0.6612 至 0.7434 之间(17、18)。尽管取得了这些进展,但其中许多工具仍处于开发的早期阶段,缺乏预测感染、缺血和其他对糖尿病足溃疡伤口管理至关重要的身体特征的自动分析能力。此外,目前的伤口分析平台依赖于专有硬件附件,例如热扫描仪(例如 Pod Metrics 的 SmartMat)、使用结构光或激光的 3D 扫描仪(例如 Ekare.ai 的 Insight 3D 和 Swift Medical 的 Ray 1),和光学相干断层扫描 (OCT) 用于可视化和量化与糖尿病足溃疡形成相关的微血管结构 ( 19 , 20 )。这些专门附件的需求可能会限制普通人群获得糖尿病足溃疡治疗的机会。为了解决这些限制,开发一种非侵入性和自动化的工具至关重要,即使在资源有限的地区,也可以全面分析伤口组织。本研究旨在
评估心脏骤停后昏迷患者的神经功能完整性仍是一个悬而未决的挑战。昏迷结果的预测主要依赖于专家对生理信号的视觉评分,这种方法容易产生主观性,并使相当多的患者处于预后不确定的“灰色地带”。对听觉刺激后脑电图反应的定量分析可以让我们了解昏迷时的神经功能以及患者苏醒的机会。然而,由于协议繁琐多样,标准化听觉刺激后的反应还远未在临床常规中使用。在这里,我们假设卷积神经网络可以帮助提取昏迷第一天对听觉刺激的脑电图反应的可解释模式,这些模式可以预测患者苏醒的机会和 3 个月后的存活率。我们使用卷积神经网络 (CNN) 对多中心和多方案患者队列中在标准化镇静和目标体温管理下昏迷第一天对听觉刺激的单次脑电图反应进行建模,并预测 3 个月时的结果。对于接受治疗性低温和常温的患者,使用 CNN 预测觉醒的阳性预测率分别为 0.83 ± 0.04 和 0.81 ± 0.06,预测结果的曲线下面积分别为 0.69 ± 0.05 和 0.70 ± 0.05。这些结果也持续存在于处于临床“灰色地带”的一部分患者中。网络预测结果的可信度基于可解释的特征:它与脑电图反应的神经同步性和复杂性密切相关,并受到独立临床评估的调节,例如脑电图反应性、背景爆发抑制或运动反应。我们的研究结果强调了可解释的深度学习算法与听觉刺激相结合在改善昏迷结果预测方面的巨大潜力。
摘要人工智能(AI)和机器学习(ML)正在彻底改变各个领域的人类活动,而医学和传染病并不能免除其快速和指数的增长。此外,可解释的AI和ML的领域已经获得了特别的相关性,并引起了人们的兴趣越来越大。传染病已经开始从可解释的AI/ML模型中受益。例如,在抗菌病毒预测和量子疫苗算法中,它们已被采用或提议更好地理解旨在改善2019年冠状病毒疾病诊断和管理的复杂模型。尽管有关解释性和可解释性之间二分法的某些问题仍然需要仔细关注,但对复杂的AI/ML模型如何得出其预测或建议的深入了解对于正确地面对本世纪传染病的日益严重的挑战变得越来越重要。
自然语言处理(NLP)和机器学习(ML)领域的最新发展已显示自动文本处理的显着改进。同时,人类语言的表达在发现心理健康问题中起着核心作用。虽然口语在接受患者的访谈中被隐式评估,但书面语言也可以为临床专业人员提供有趣的见解。现有的工作中经常研究心理健康问题,例如抑郁或焦虑。然而,还在研究饮食失调的诊断如何从这些新技术中受益。在本文中,我们介绍了该领域最新研究的系统概述。Our investigation encompasses four key areas: (a) an analysis of the metadata from published papers, (b) an examination of the sizes and speci fi c topics of the datasets employed, (c) a review of the application of machine learning techniques in detecting eating disorders from text, and fi nally (d) an evaluation of the models used, focusing on their performance, limitations, and the potential risks associated with current methodologies.
模具行业不断要求先进的技术来提高模具在其生命周期内的性能。直接金属沉积 (DMD) 为模具翻新提供了关键机会。然而,通过 DMD 的典型刀具路径由交替的平滑段和尖角组成。在这里,能量密度和粉末数量的波动通常会导致工具恢复部分出现严重的几何偏差。这项工作提出了一种基于机器学习的新型预测方法,该方法使用与工艺参数和执行的几何形状相关的特征来表征路径。该方法的优势已在刀具路径上得到验证,刀具路径通常表征工具翻新过程。© 2022 作者。由 Elsevier Ltd 代表 CIRP 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
对于某些可区分的函数h:r d→r和d二维向量的总数。这种特征的示例包括例如总均值,比率或相关系数。这也称为有限的人口推断问题(Beaumont和Haziza 2022)。我们进一步假设n很大,每个单个实验的计算成本也是不可行的。在这种情况下,研究经常诉诸于子采样。亚采样方法在过去几年中的人口急剧增加。例如,MA,Mahoney和Yu(2015); Ma等。(2022)引入了大数据回归的杠杆采样,随后启发了逻辑回归的类似发展(Wang,Zhu,Zhu和Ma 2018; Yao and Wang 2019)广义线性模型(AI等人。2021b; Yu等。2022)和分位回归(Ai等人2021a; Wang,Peng和Zhao 2021)。同样,Dai,Song和Wang(2022)开发了