人类被一个充满信息的复杂世界所包围。人类如何才能生存而不被淹没?视野内通常有数百到数千个物体和其他类型的信息,但是我们的感官和认知能力是有限的。幸运的是,并非所有物体或信息都与我们当前的议程或长期生存目标有关。通过进化和学习,人类逐渐开发出选择信息的策略。这被称为选择性注意。随着人工智能 (AI) 从简单的数字世界迁移到复杂的现实世界,AI 代理面临着同样的挑战:它们如何从充满信息的世界中选择重要信息?给定的计算模型(无论是生物的还是数字的)的容量都是有限的。因此,注意力选择对于确保将资源投入到关键组件上是必要的。由于人类会主动寻找所需的信息,因此凝视可以揭示潜在的注意力模式 [Posner and Petersen,1990]。人类在视野中央 1-2 度的视觉中心具有高敏锐度(即,在手臂长度处覆盖手指的宽度),而周边的分辨率则逐渐降低。他们学会了在正确的时间将中央凹移动到正确的位置,以处理与任务相关的重要视觉刺激 [Borji and Itti,2014;Hayhoe,2017]。这种选择性注意机制
许多人工智能系统设计师都在努力寻找最佳方法,以收集不同类型的训练数据。在线群体提供了一种廉价的按需情报来源,但他们往往缺乏许多领域所需的专业知识。专家提供隐性知识和更细致入微的输入,但他们更难招募。为了探索这种权衡,我们在设计基于文本的对话代理的背景下,比较了新手和专家在人类智能任务方面的表现和看法。我们开发了一个初步的聊天机器人,它模拟与寻求心理健康建议的人的对话,以帮助教育 7cups.com 的志愿听众。然后,我们招募了经验丰富的听众(领域专家)和 MTurk 新手工作者(群体工作者)来执行任务,以改进具有不同复杂程度的聊天机器人。新手群体在只需要自然语言理解的任务上的表现与专家相当,例如纠正系统对用户语句的分类方式。对于更具生成性的任务,例如创建新的聊天机器人对话,专家们表现出更高的质量、新颖性和情感。我们还发现了一个激励差距:众包工作者喜欢互动任务,而专家们则认为这项工作乏味且重复。我们提供了设计考虑,以分配众包工作者和专家完成 AI 系统的输入任务,并更好地激励专家参与 AI 的低级数据工作。
在澳大利亚,大规模电池储能系统(BES)的推动正在获得令人难以置信的动力。最近的报告表明,目前正在建设的电池项目的数量超过了太阳能和风的总和。这种转变是一个明显的迹象,即随着燃煤植物的淘汰,储能正在引起人们的关注。目前,正在进行7.8 GW的公用事业规模项目,预测表明,到2035年,这种能力可能会从今天的1.7 GW跃升至18.5 GW。这种增长是由支持性政策和电池成本下降的推动,使电池成为澳大利亚到2030年实现82%可再生能源混合的目标的关键部分。与此同时,新西兰通过发射首个公用事业规模的电池(怀卡托的Rotohiko电池)取得了长足的进步。此35 MW/35 MWH的设施旨在通过在高峰需求期间提供快速的储备功率来增强电网稳定性并支持可再生能源的整合。它可以满足2,000多家房屋的日常能源需求,这标志着朝着新西兰朝着2030年100%续签的野心迈出的重要一步。此外,子午线还在开发一个更大的100 MW/200 MWH电池项目,预计该项目将进一步增强国家电网。在两个国家的能力和景观中,这些vel opment s Ref tre nsforma tiv e nsforma tiv e tre nsforma tiv e nsforma tiv e tre nsforma tiv e tre nsforma tiv e s of ct and scape s of ct and Scape s of to nsforma s of to nsforma s of the s of the w cas w cas wcas to wcase wcase wcase他们对可持续能源的未来的承诺。
内阁还决定采取必要措施批准卡塔尔政府和土耳其共和国政府之间的人道主义援助合作协定。内阁批准了卡塔尔政府和布隆迪共和国政府之间的经济、商业和技术合作协定草案,以及卡塔尔国社会发展和家庭部与匈牙利文化和创新部之间的家庭政策合作谅解备忘录草案。内阁随后审议了六份报告并作出相应决定。这些报告包括关于制定国家预防和安全框架以应对环境损害和违法行为的报告、关于研究政府实体提供的服务费用的技术委员会工作的第二份报告、国家案件部2024年年度报告、关于卡塔尔金融中心战略(2024-2030年)的报告、关于通信和信息技术部长阁下参加第79届联合国大会成果的报告以及关于市政部长阁下参加建设未来城市的城市景观全球展览成果的报告。
计算机视觉技术在自动驾驶汽车的感知堆栈中起着核心作用。使用此类方法来感知给定数据的车辆周围环境。3D激光雷达传感器通常用于从场景中收集稀疏的3D点云。然而,根据人类的看法,这种系统努力鉴于那些稀疏的点云,因此很难塑造现场的看不见的部分。在此问题中,场景完成任务旨在预测LiDAR测量中的差距,以实现更完整的场景表示。鉴于最近扩散模型作为图像的生成模型的有希望的结果,我们建议将其扩展以实现单个3D LIDAR扫描的场景。以前的作品使用了从LiDAR数据提取的范围图像上使用扩散模型,直接应用了基于图像的扩散方法。差不多,我们建议直接在这些点上操作,并介绍尖锐的和降解的扩散过程,以便它可以在场景规模上有效地工作。与我们的方法一起,我们提出了正规化损失,以稳定在denoising过程中预测的噪声。我们的实验评估表明,我们的方法可以在单个LIDAR扫描中完成场景,作为输入,与最新场景完成方法相比,产生了更多详细信息的场景。我们认为,我们提出的扩散过程公式可以支持应用于场景尺度点云数据的扩散模型中的进一步研究。1
计算机视觉技术在自动驾驶汽车的感知堆栈中起着核心作用。使用此类方法来感知给定数据的车辆周围环境。3D激光雷达传感器通常用于从场景中收集稀疏的3D点云。然而,根据人类的看法,这种系统努力鉴于那些稀疏的点云,因此很难塑造现场的看不见的部分。在此问题中,场景完成任务旨在预测LiDAR测量中的差距,以实现更完整的场景表示。鉴于最近扩散模型作为图像的生成模型的有希望的结果,我们建议将其扩展以实现单个3D LIDAR扫描的场景。以前的作品使用了从LiDAR数据提取的范围图像上使用扩散模型,直接应用了基于图像的扩散方法。差不多,我们建议直接在这些点上操作,并介绍尖锐的和降解的扩散过程,以便它可以在场景规模上有效地工作。与我们的方法一起,我们提出了正规化损失,以稳定在denoising过程中预测的噪声。我们的实验评估表明,我们的方法可以在单个LIDAR扫描中完成场景,作为输入,与最新场景完成方法相比,产生了更多详细信息的场景。我们认为,我们提出的扩散过程公式可以支持应用于场景尺度点云数据的扩散模型中的进一步研究。1
摘要。半干旱地区对全球碳汇的年际变异性影响。南半球非洲的半干旱和干旱地区。在南半球只有稀疏的原位覆盖范围。这导致了这些区域的基于测量的碳量估计值的确定性。此外,动态的全球植被模型(DGVM)在半干旱地区显示出较大的不一致。卫星CO 2测量值提供了有关南非碳循环的空间广泛和独立的信息来源。我们检查了观察到卫星(GOSAT)CO 2浓度测量的温室气体,从2009年至2018年在南部非洲。我们推断出使用TM5-4DVAR大气反转系统的GOSAT测量结果一致的CO 2土地 - 大气。我们发现了在卫星观测值与仅在现场测量的情况下发生的大气反转之间的系统差异。这表明后者中有限的测量信息内容。我们将基于GOSAT的漏液和太阳能诱导的荧光(SIF;光合作用的代理)作为大气约束,以将TrendyV9 Ensemble的DGVMS呈现出表现出的dgvvs,这些dgvms呈现出相应的流量。选定的DGVM允许研究驱动南部非洲碳循环的植被过程。这样做,我们基于卫星的过程分析了南部草原的Pin-Point光合作用吸收,成为南部际变化的主要驱动力
约克大学人工智能哲学 AP/PHIL/COGS 3750 3.00(Lect 01)2021 年冬季课程类型:讲座 | 星期四,下午 2:30(EST),3 小时 | 地点:Zoom | Cat# M73K01(AP COGS)/ W55M01(AP PHIL)重要日期:1 月 11 日(学期开始)、1 月 14 日(第一堂课)、2 月 13-19 日(冬季阅读周)、3 月 12 日(不获得成绩的最后一天退课)、4 月 8 日(最后一堂课)、4 月 12 日(冬季课程结束)、4 月 13 日(本学期提交作业的最后一天)、4 月 14-28 日(冬季考试期)课程讲师:Michael Barkasi(barkasi@yorku.ca)办公时间:通过 Zoom,星期四,下午 1:30-2:30(EST);可能的其他时间。需要预约(请发送电子邮件)。先决条件:AP/PHIL/COGS 2160 3.00 或 AP/PHIL 2240 3.00 之一 参加课程的技术要求:eClass 访问和 Zoom。强烈建议学生参加周四的 Zoom 讲座并积极参与麦克风和视频,但这不是强制性的。(如果愿意,参加 Zoom 会议的学生可以关闭摄像头并将麦克风静音。) 讲座将被录制并通过 eClass 提供给那些不能参加的学生。(与学生的讨论时间不会被记录,因此不参加 Zoom 会议的学生将错过课堂的这一部分。) 以下是一些有用的学生计算信息、资源和帮助链接:Moodle 学生指南 | Zoom@YorkU 最佳实践 | Zoom@YorkU 用户参考指南 | 学生计算网站 | 约克大学电子学习学生指南 时间和地点:这是一门远程授课的课程。每周四将在预定的 2:30-5:30pm(EST)时间段通过 Zoom 进行讲座和讨论。重复 Zoom 会议的链接将发布到 eClass,为无法现场参加的人提供讲座(但不提供讨论)的录音。虽然不需要参加正常的 Zoom 会议,但你需要在第 8 周(3 月 4 日)星期四下午 2:30-5:30(EST)时间段参加期中考试;你还需要在期末考试期间分配给课程的时间段参加期末考试。请注意,这是一门依赖远程教学的课程。校园内不会有面对面的互动或活动。虚拟办公时间:通过 Zoom,星期四,下午 1:30-2:30(EST),或我们双方同意的时间。无论哪种情况都需要预约(请发送电子邮件设置预约并获取 Zoom 链接)。如果您有任何问题、意见或疑虑,请随时通过电子邮件联系我(课程主任)。
18. 水果的铜含量和抗氧化活性,关联。教授、博士、工程师。 Despina-Maria Bordean,工程教授、博士。 Adrian Rivis,工程教授、博士。西蒙·阿尔达,副教授。教授、博士、工程师。 Teodor Cristea,讲师、工程博士。 Laura Radulescu ...... 151 19. 一些无麸质谷物的营养状况评估,教授、博士。卢米尼塔·皮尔武列斯库,副教授。教授、博士、工程师。德斯皮纳-玛丽亚·博丁,副教授。教授、博士、工程师。 Aurica-Breica Borozan,讲师、工程博士。 Narcis Gheorghe Baghina,讲师、工程博士。 Diana Moigradean ................................ 159 20. 评估百里香提取物的抗菌潜力,讲师 Ion Valeriu Caraba 博士、副教授 Marioara Nicoleta Caraba、讲师 Delia Hutanu 博士、教授 Elena Pet 博士、教授 Roxana Popescu ............................................................................................................................. 167 21. 综合农业系统以提高植物和动物产量,Afaf Al-Nasser、Hanan Al-Khalaifah、Hamad Al-Mansour ............................................................................................. 175 22. 富含肉汤和菠菜的手工面条的制造、物理化学和感官评估,副教授。 Ramona Cristina Heghedűş Mîndru 教授、博士、工程师安德烈亚·安娜玛丽·吻,副教授。 Ariana Bianca Velciov 教授、博士、副教授。 Dora Manuela Orboi 教授、博士、副教授。 Gabriel Heghedűş Mîndru 教授博士...................................................................................................... 181 23. 从患有临床子宫内膜炎的牛身上分离出需氧细菌菌群的研究,Ionica Iancu 博士、Viorel Herman 博士教授、Ileana Nichita 博士教授,助理。 Alexandru Gligor ................................................... 187 24. 手工成熟牛奶奶酪的生产、理化和感官评价,Assoc。 Gabriel Heghedűş Mîndru 教授、博士、工程师Daniel Bogdan Platon、Teodor Ioan Traşcă 教授、博士、Ducu Sandu ştef 教授、副教授。 Ramona Cristina Heghedűş Mîndru 教授博士....... 195 25. 体外和体内条件下栽培的紫锥菊物种光合作用率的研究,教授,博士。多林·杜米特鲁·卡门,工程师。博士。 Mădălina Elena Dumitraşcu,副教授。教授、博士。萨拉克·伊万 (Sărac Ioan),副教授。教授、博士。玛丽亚·米哈埃拉·莫阿塔 (Maria Mihaela Moatăr),讲师博士。 Petru Ioan Dragomir ...................................................................................... 203 26. 关于从水产养殖鱼类中分离的细菌菌株存在抗生素耐药性的研究,Emil Tîrziu 教授、Ioan Bănăţean-Dunea 教授、Ileana Nichita 教授、博士,Lect. Ionela Hotea 博士,Lect。 Iulia-Maria Bucur .................... 211 27. 某些类型香肠的流变特性研究,教授、博士。 Ducu-Sandu Řtef,工程师。 Nicoleta Bucicoi,教授,博士。 Adrian Riviş,教授、博士。拉维尼娅·特夫,副教授。 Ramona Heghedűş-Mîndru 教授、博士......................................................... 217
2023 算子代数及其应用研讨会:与逻辑的联系,菲尔兹研究所,多伦多。2023 C ∗ -代数:张量积、近似和分类,E. Kirchberg 纪念,明斯特。2023 非交换谐波分析和量子信息,米塔格莱弗研究所。2023 算子代数的现代趋势,Ed Effiros 纪念,加州大学洛杉矶分校。2023 座谈会,加州大学圣地亚哥分校,概率算子代数研讨会,加州大学伯克利分校。2022 加拿大算子代数研讨会 (COSy),渥太华,全体会议发言人。2022 北英国泛函分析研讨会 (NBFAS),英国纽卡斯尔,全体会议演讲。2022 北方的非交换性,查尔姆斯大学,哥德堡,全体会议发言人。 2021 函数分析研讨会,加州大学洛杉矶分校。2021 量子概率和非交换谐波分析,莱顿洛伦兹中心。2021 算子研讨会,首尔国立大学。2021 国际算子理论与应用研讨会 (IWOTA),兰卡斯特,半全体会议。2021 团体聚会 C*-代数庆祝 Siegfried Echterhoff 60 岁生日,明斯特。2021 算子代数暑期学校,渥太华大学。讲座系列(4 × 60 分钟)。2021 算子代数特别周,华东师范大学算子代数研究中心,上海。2021 量子信息论中的非局部博弈,AIM 研讨会。2019 C*-代数研讨会,Oberwolfach 数学研究所。 2019 多面 Connes 嵌入问题,班夫 BIRS 研讨会。2019 巴塞罗那 CRM 几何、拓扑和代数高级课程(2 × 60 分钟)。2019 专题计划算子代数、群和 QIT 的应用,ICMAT,Lect 系列 5 × 90 分钟。2019 数学图像语言研讨会,哈佛大学。2019 二十一世纪的算子代数,宾夕法尼亚大学,费城。2019 悉尼的子因子:算子代数、表示论、量子场论,新南威尔士大学悉尼。2019 Connes 嵌入问题和 QIT,奥斯陆大学冬季学校,讲座系列(4 x 60 分钟)。2018 2018 概率算子代数研讨会,加州大学伯克利分校。2018 座谈会,隆德大学。2017 量子信息理论中的专题程序分析,IHP Paris,讲座系列(2 x 90 分钟)。2017 C ∗ -代数中的青年女性(YMC ∗ A),哥本哈根大学,主讲师。2016 当前量子信息理论中的数学方面,韩国大田。2015 乔治布尔数学科学会议,科克。2015 加拿大算子代数研讨会(COSy),滑铁卢,全体发言人。2014 加拿大算子代数研讨会(COSy),多伦多,全体发言人。2013 Banach 代数及其应用,查尔姆斯大学,哥德堡,全体发言人。 2013 年算子空间、谐波分析和量子概率研讨会,马德里。2012 年北英泛函分析研讨会 (NBFAS),英国牛津,讲座系列(3x 60 分钟)。2012 量子信息理论中的算子结构,BIRS,班夫。2011 EMS-RSME 联合数学周末,毕尔巴鄂。2011 C ∗ -代数和相关主题会议,RIMS,京都。2011 大平原算子理论研讨会 (GPOTS),亚利桑那州坦佩,全体会议发言人。
