1乌普萨拉大学医学科学系,入口40,5楼,75185,瑞典乌普萨拉; 2乔治全球卫生研究所,新南威尔士大学,悉尼,新南威尔士州,澳大利亚; 3瑞典Huddinge Karolinska Institutet神经生物学,护理科学与社会的家庭医学系; 4瑞典Falun Dalarna University的卫生与社会研究学院; 5瑞典斯德哥尔摩Karolinska Institutet的Danderyd医院临床科学系; 6糖尿病中心,瑞典斯德哥尔摩地区学术专家中心; 7心血管,肾脏和代谢,医疗部,生物制药,阿斯利康,哥德堡,瑞典; 8心血管,肾脏和代谢,医疗部,生物制药,阿斯利康,斯德哥尔摩,瑞典; 9 Sence Research AB,瑞典Uppsala;瑞典乌普萨拉大学肾脏医学科学系10; 11瑞典斯德哥尔摩Karolinska Institutet的Solna医学系心脏病学部门;和12 Capio S:瑞典斯德哥尔摩TGörans医院
1乌普萨拉大学医学科学系,入口40,5楼,75185,瑞典乌普萨拉; 2乔治全球卫生研究所,新南威尔士大学,悉尼,新南威尔士州,澳大利亚; 3瑞典Huddinge Karolinska Institutet神经生物学,护理科学与社会的家庭医学系; 4瑞典Falun Dalarna University的卫生与社会研究学院; 5瑞典斯德哥尔摩Karolinska Institutet的Danderyd医院临床科学系; 6糖尿病中心,瑞典斯德哥尔摩地区学术专家中心; 7心血管,肾脏和代谢,医疗部,生物制药,阿斯利康,哥德堡,瑞典; 8心血管,肾脏和代谢,医疗部,生物制药,阿斯利康,斯德哥尔摩,瑞典; 9 Sence Research AB,瑞典Uppsala;瑞典乌普萨拉大学肾脏医学科学系10; 11瑞典斯德哥尔摩Karolinska Institutet的Solna医学系心脏病学部门;和12 Capio S:瑞典斯德哥尔摩TGörans医院
M§âjUÉÆ§âgÀÄ PÀ°¸ÀĪÀ zsÉÆÃgÀuÉ M¨ÉÆâ§âgÉÆAzÉÆAzÀÄ VqÀ ¨É¼É¸ÀĪÀ ¥ÉæÃgÀuÉ «ÄvÀ¸ÀAvÀw »vÀ£ÀÄrAiÀÄ £ÀÄrAiÉÆÃt §¤ß, ¸ÉêÉAiÀÄ ªÀiÁqÉÆÃt §¤ß, //gÁ//
结果:在验证数据集中,AI 左室内径的精度 SD 为 3.5 毫米。具体而言,个人专家测量值与专家共识的精度 SD 为 4.4 毫米。AI 与专家共识之间的组内相关系数为 0.926(95% CI,0.904–0.944),而个人专家与专家共识之间的组内相关系数为 0.817(0.778–0.954)。对于室间隔厚度,AI 的精度 SD 为 1.8 毫米(组内相关系数,0.809;0.729–0.967),而个人的精度 SD 为 2.0 毫米(组内相关系数,0.641;0.568–0.716)。对于后壁厚度,AI 的精度 SD 为 1.4 毫米(组内相关系数,0.535 [95% CI,0.379–0.661]),而个人的精度 SD 为 2.2 毫米(0.366 [0.288–0.462])。我们展示了所有图像和注释。这突出了具有挑战性的病例,包括图像质量差和锥形心室。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
摘要:有关左心的解剖结构的知识,特定于中庭(LA)和心室(即心内膜外 - 伏托(Vendo)和表心外 - lvepi)对于评估心脏功能是必不可少的。超声心动图的心脏结构的手动分割是基线参考,但结果是用户依赖性且耗时的。为了支持临床实践,本文提出了一种新的深入学习(DL)工具,用于从超声心动图图像中分割左心的解剖结构。特别是设计为两个卷积神经网络,Yolov7算法和一个U-NET的组合,其目的是将超声心动图像自动分为Lvendo,Lvepi和La。基于DL的工具接受了对心脏习得的培训和测试。对于每位患者,临床医生收购并注释了末端和末端末端的顶部两次和四室视图。在全球范围内,我们的基于DL的工具能够分割Lvendo,Lvepi和La,提供了等于92.63%,85.59%和87.57%的骰子相似性系数。总而言之,所提出的基于DL的工具被证明是可靠的,可以自动分割左心的解剖结构并支持心脏病临床实践。
背景:患有左心心脏综合征(HLHS)的患者经历了palliation缩,直到Fontan手术面临神经发育(ND)结果受损的风险。与双侧肺动脉带,导管支架和气球置术的混合过程相比,与避免早期新生儿心脏肺旁通(CPB)手术的Norwood I期手术相比,与Norwood I期相比,可能会提供不太侵入性的I阶段I程序。尽管胎儿脑血液动力学改变了,但I期手术的类型可能是协方差的影响,并且由于推迟新生儿CPB手术,也可能会改变功能结果。在这篇综述中,我们分析了混合程序后的结果和功能结果作为I阶段程序。方法:审查分析了2022年3月15日之前发表的原始出版物(OPS),由Cochrane,Embase,Ovid,Scopus和Web of Science确定。如果分析了HLHS患者的短期至长期神经发育结果,脑发育,体细胞和心脏结局,并分析了通过混合程序治疗的变体,则包括OP。除了数据库搜索外,我们还审查了分析的OP的所有参考文献,以获取可用研究的全面列表。总结了作者,出版年份,研究人群的人口特征,研究设计(前瞻性或回顾性),研究评估和主要发现。结果:ND结局和功能性心脏预后患者的数据包括21个OP。总体而言,作为HLHS的I阶段I,中期和杂种手术患者的中期结局受损。在两项比较研究中,仅确定了I阶段程序(混合与诺伍德)之间的略有差异,从而影响右心室重塑,短期和中期ND结局,降低了脑的生长直到两岁,寿命的质量降低了,血液动力学的脑动力学质量变化,并改变了脑部脑力和脑部的脑部灌注模式。结论:尽管HLHS患者的中期随访和比较杂交程序与诺伍德程序的中期随访有一些较小的差异,但其对ND结果的影响似乎很低。这可以通过大量的协变量以及小型研究人群以及接受混合或诺伍德手术为I阶段的患者的不同选择标准来解释。
材料和方法:我们回顾了57名CRT接收者的回顾性数据。阳性10响应定义为LVEF的10%以上。通过MRI和CT图像创建了心室11激活和ECG的个性化模型。在内在节奏和带有REF-PS的室内节奏和双室(BIV)起搏过程中,室中12个激活的特征源自13个模型,并与临床数据结合使用,以训练监督的ML分类器。高精度为0.77(ROC 15 AUC = 0.84)的14个最佳逻辑回归模型分类的CRT响应者。将LR分类器,模型模拟和贝叶斯优化使用高斯16过程回归组合在一起,以识别最佳的ML-PS,该ML-PS最大化每个患者的LV表面上的17 CRT响应的ML得分。18
积极的情绪是指一个情感家庭,其中包括幸福,娱乐,依恋爱,养育爱,敬畏和热情等(Shiota,Neufeld,Yeung,Yeung,Moser,Moser和Perea,2011年)。这些情绪具有重要的社会功能,促进方法行为,激励社会参与,促进新的社交联系(Fredrickson,2004年),并逆转由负面情绪引起的生理激活(Fredrickson&Levenson,1998)。一定程度的积极情绪反应性被认为是最佳的;太低或太高的水平可能是有问题的。例如,积极情绪过高的基础临床症状,例如阿内迪尼和抑郁症,而过高的水平会导致不适当的人际边界,风险危险和躁狂(Gruber,Harvey,Harvey和Purcell,&Purcell,2011年)。分布在情感上和情绪调节的分布式大脑系统协同行动,以产生观察到的积极情绪反应的水平(通常以面部行为,生理学和主观经验的变化来衡量)。因此,支持积极情绪的神经系统的损伤是否导致情绪柔和或强化的情绪应取决于解剖学损伤的基因座。通常,对情绪产生电路的损害应降低积极的情绪反应性,而对情绪调节电路的损害应削弱抑制作用,从而导致高度带来积极的情绪。长期以来一直在争论积极情绪在大脑中横向的程度。两条证据支持这一结论。While emotion generating sys- tems (i.e., projections from pregenual anterior cingulate cor- tex to the central nucleus of the amygdala, hypothalamus, and brainstem) initiate rapid emotional responses to positive emotional cues ( Saper, 2002 ), emotion regulating systems (i.e., ventrolateral prefrontal cortex, orbitofrontal cortex, dorso- medial prefrontal cortex, and pre/supplementary motor area), with connections to striatum, thalamus, and subthalamic nuclei, promote down-regulation of affective responding in ways that are commensurate with individual goals and the social context ( Aron, 2007; Ochsner & Gross, 2005; Wager, Davidson, Hughes, Lindquist, & Ochsner, 2008 ).有些人认为对积极和负面情绪的感知和表达存在正确的半球优势(Tucker,1981),但其他人则建议左半球在积极情绪中起着主导作用(Davidson&Fox,1982)。先前的研究得出的结论是,左半球损害通常会减少积极的情绪,而右半球损害通常会增加积极的情绪。在WADA的研究中,可以停用右半球(通过单侧氨基脂质注射杏仁钠)但保留左侧的左半球,患者经常表现出乐观和欢笑(Perria,Rosadini和Rossi,&Rossi,&Rossi,1961; Sackeim等,Sackeim等,1982)。同样,许多病变研究,但不是全部(House,Dennis,Warlow,Hawton和Molyneux,1990),发现右半球损伤通常会导致笑声和微笑(Gainotti,1972; Sackeim等,1982)。积极的情绪被认为在右半球损害或功能障碍的范围内持续存在,因为
摘要 计量矩阵 S 表示反应速率向量到浓度时间导数空间的映射。计量矩阵的左零空间包含动态不变量:浓度变量的组合,称为代谢池,其总浓度不会随时间而变化。通过类比 S 形成的传统反应图,可以从 ST 得出化合物图。与 S 的(右)零空间的通量分析类比使我们能够将代谢池分为三类:A 类包含以某些部分形式的化学元素及其组合,B 类除了包含网络内部携带此类部分的辅因子外,还包含此类部分,C 类仅包含辅因子。左零空间基的凸公式使我们能够将代谢池直接分为这三类。 B 型代谢池包括保守池,这些池形成代谢物和辅因子的部分占据和部分空置浓度状态的结合物。因此,B 型代谢池描述了主要底物和辅因子之间捕获能量和氧化还原电位等特性的部分交换的各种状态。凸基可以清楚地洞察人类红细胞中糖酵解途径的这种交换,包括识别形成结合物的高能池和低能池。示例表明,池图可能比通量图更适合信号通路。对化学计量矩阵左零空间的分析使我们能够定义细胞的可实现状态及其生理相关性。