重要说明:建议的280 AH Wallmount电池与18KPV逆变器的最低比率为1.5至1。一个电池 - 一个逆变器系统将与18KPV逆变器一起使用 - 执行接近 - 但不能达到其全额额定容量。18KPV可以以连续230的速率充电和放电,而一个280AH Wallmount电池只能接受或传递200安培的最大值,并推荐连续额定值为180 AMP。只有一个电池,18KPV将拥有完整的12,000瓦可用于卖出的售价,并从PV和电池组合使用负载,但在使用电池以供电或卖回电网时,将限制为10,240瓦的最大值。在一个逆变器上使用一个电池时,我们建议将最大充电和放电设置设置为180安培。或强烈考虑提供2个电池。
披露伊丽莎白·史密斯(Elizabeth Smyth)从Amgen,Astellas,Astellazeneca,Beigene,Bristol Myers Squibb,Daiichi Sankyo,Daiichi Sankyo,Merck,Mirati,Novarti,Pfizer,T-Cypher Bio Bio,Viracta和Zymworks和Zymeyworks以及Zymeyworks外面的工作;以及阿斯利康(Astrazeneca)和布里斯托尔·迈尔斯(Bristol Myers Squibb)的赠款。她是欧洲胃肠道试验小组研究和治疗组织(2024-2027)的主席,也是英国和爱尔兰食管胃癌组的受托人。她得到了牛津大学国家健康与护理研究所生物医学研究中心的支持。
图2:大众护卫技术的硬件组件。Sciex 7500+系统的Q0区域中的添加t杆电极积极去除污染离子(紫色符号),从而导致输入仪器的样品羽流(红色和绿色符号)。T杆电极下游的离子光学元件的视觉比较显示出对基质污染的影响较小,尽管在源窗帘板上沉积了明显的残留物(左上),当时与Sciex 7500系统上的相同组件相比,没有此保护,如右下所示。
主题:第 74 届第 38 届平行医疗保健培训研讨会参与者指导信 (LOI) 1. 本备忘录为计划于 2024 年 10 月 21 日至 25 日举行的第 74 届第 38 届平行医疗保健培训研讨会提供信息和说明。 2. 目的:本次研讨会为 INDOPACOM 战区医疗保健专业人员提供了获得继续教育学分、专业认证和宝贵专业发展的机会。此外,这也是驻韩美军 (USFK) 成员与东道国和地区伙伴建立和加强关系的机会。 3. 注册流程:在活动网站 https://www.korea.amedd.army.mil/event/38ParallelHCTS/index.html 上报名参加研讨会。a. 注册人必须提供人口统计信息、他们将要参加的轨迹以及能够接收邀请和活动更新的有效电子邮件地址。b. 注册人还可以提供他们对可选社交活动的兴趣。 4. TDY 和旅行:a. 旅行者将遵循并遵守其基金备忘录提供的资金指导。旅行授权摘要如下:抵达仁川机场 (ICN) 的旅行者将使用免费的 Camp Humphreys 班车作为前往 Camp Humphreys 的授权交通工具。POV 不被授权,周边里程不被授权,租车不被授权(Camp Humphreys 班车时间表将在欢迎礼包中提供)。贵宾应在第 10 段中向 POC 提供他们的行程,以确保 BDE 代表能够在抵达时在仁川机场妥善迎接。如果通过 618 th DC(AS) 或 106 th MD(VSS) 进行协调,请将这些行程提供给 CLINOPS 进行整合。旅行第一天和最后一天的餐费和杂费费率为 39.75 美元,其他所有日子的餐费和杂费费率为 53 美元。任何对本资金指导的例外情况都将根据具体情况考虑;如果您获得第 65 届 MED BDE 的资助,则 POV 使用将不受任何例外限制。旅行者的家乡组织可以根据其认为合适的情况资助其他授权。b. 所有来访人员、现役和退役军人以及国防部文职人员都可以通过出示其有效(在
摘要 - 采用人工智力来创建高度逼真的合成媒体,对隐私,安全性和错误信息传播构成了重大威胁。传统的深层检测方法,主要基于电流神经网络(CNN),通常在有效地识别这些复杂的伪造方面掉落。本项目探讨了平行视觉变压器(PVIT)用于深泡探测器的使用,利用其高级功能在建模复杂模式和视觉数据中的长距离依赖性中进行建模。我们使用NVIDIA A100 GPU的Google Colab培训了由140K真实和假面的数据集培训了PVIT模型。我们的结果表明,PVIT可显着提高检测准确性,精度,召回和鲁棒性,提供有希望的解决方案,以打击达到91.92精度的DeepFake技术所带来的挑战。索引术语 - 深层检测,平行视觉变形,以前,AI生成的,伪造的内容识别,变换,网络安全,数字取证,机器学习,深度学习。
摘要 - 已引入了一种新的生成模型,基于扩散的生成模型(DGM),以增强语音。语音增强的有效性取决于各种因素,例如信噪比和噪声类型。在无法获得干净的参考信号的实际情况下,希望监视语音增强方法的有效性。本研究仅使用增强的语音信号调查了基于DGM的语音增强有效性的可能性。它提出了通过采用多个增强信号的相对差异的倒数来估计增强语音信号的标准不变信号渗透率。索引术语 - 言语增强,基于扩散的生成模型,增强语音信号的逆相对差异,si-sdr
他们能够以新颖的方式应用其数学,计算机科学和信息学技能,以解决IT研究和开发中的任务。他们能够正式化复杂的IT任务,识别和研究其理论和实际背景,然后解决它们。他们能够在团队以及与IT或其他专业人员的项目中启动合作和合作。他们能够专业地使用科学和技术信息来源,以获取解决问题所必需的知识,并进行严格的解释和评估。态度:
量子计算(QC)是一种新的计算范式,有望比各个域中的经典计算大幅加速。但是,近期QC面临许多挑战,包括有限的量子连接性和嘈杂的量子操作。要解决量子连接约束,在量子计算机上执行量子电路是必需的。此过程涉及执行初始量子位置并使用量子交换操作来重新安置最近的静脉相互作用。减少电路映射中的互换计数对于提高量子电路执行的成功率至关重要,因为掉期昂贵且容易出错。在这项工作中,我们通过结合增量和并行解决布尔满意度(SAT)来引入一种新颖的电路映射方法。我们提出了用于电路映射问题的创新SAT编码,该编码可显着改善基于求解器的映射方法,并在编译质量和编译时间之间提供平稳的权衡。通过在2种不同的量子计算机拓扑上涵盖3种量子算法的78个实例的全面基准测试,我们证明我们的方法比基于最先进的求解器的方法快26××,从而将汇编时间从数小时减少到数分钟的时间来减少重要的量子应用。我们的方法还超过了现有的启发式算法的掉期数量26%。
艾玛·约翰逊 1* , 塔尔博特·金尼 1* , 汉娜·鲁伦 1* , 瑞安南·阿梅鲁德 2 , 黛莎·R·安德森 3 , 玛丽·安德森 2 , 阿内林·梅·安德烈斯 3 , 拉米尔·阿尔沙德 3 , 凯莉·巴宾-霍华德 3 , Dede G Barrigah 3 , Addison Beauregard 1 , Leah Beise 2 , 诺兰克里斯托弗森 3 , 伊利亚 L 大卫 3 , 卢克·德瓦德 1 , 玛雅迪亚兹 3 , 莉莉·唐纳 2 , 娜塔莉·埃林格 1 , Diellza Elmazi 3 , 莱利·恩格尔哈特 1 , Tamkanat Farheen 3 , 马克·M·菲格罗亚 3 , 索伦·弗拉顿 2 , 麦迪逊·弗拉什 1 , 伊丽莎白·冈萨雷斯 2 , 杰伦古尔斯比 4 , Estefania Guzman 3、Logan Hanson 3、John Hejl 4、Jackson Heuschel 3、Brianna Higgins 1、Brylee Hoeppner 1、Daijah Hollins 3、Josette Knutson 1、Rachel Lemont 3、Mia Lopez 1、Samantha Martin 4、Trinity May 2、Abby McDade 3、Nearyroth Men 2、Ellie Meyer 1、Caroline R Mickle 3、Sebastian Mireles 4、Avery Mize 1、Jaiden Neuhaus 1、April Ost 2、Sarah Piane 4、Makenzie Pianovski 3、Aliya Rangel 3、Jessica Reyes 4、Alexandra Ruttenberg 3、Jacob D Sachs 3、Brandon Schluns 3、Nicholas施罗德 4 , Peighton R Skrobot 3 , Cylie Smith 1 , Sydney Stout 1 , Andrew Valenzuela 1 , Kaiden P Vinavich 3 , Amber K Weaver 3 , Michael Yager 3 , Jose Zaragoza 4 , Gabriela Zawadzki 3 , Weam El Rahmany 3 , Nicole L. Scheuermann 3 , Hemin P Shah 3、Kayla L Bieser 5、Paula Croonquist 2、Olivier Devergne 3、Elizabeth E Taylor 3、Jacqueline K Wittke-Thompson 4、Jacob D Kagey 6§、Stephanie Toering Peters 1