抽象密钥消息提出了一个原始的GWAS模型,该模型集成了等位基因的祖先,并允许探测背景特定的添加剂和优势QTL,涉及异性群互补性和混合性能。抽象的玉米遗传多样性被构造成彼此选择和改善的遗传群体。此过程会随着时间的流逝而增加组的互补性和分化,并确保由小组间杂交产生的杂种表现出较高的表现和异性症。为了确定与混合性能和杂种群体互补涉及的基因座,我们引入了一个原始的关联研究模型,该模型将等位基因的异性群的起源与异性构成群体分离,并将其与常规的添加剂/优势模型进行了比较。这个新模型应用于凹痕和弗林特线之间的阶乘,以及具有两种不同分析层的凹痕混合线之间的拨号线:在每个环境中和多种环境中。我们确定了所有特征的几个强大的添加剂QTL,包括一些用于开花时间的众所周知的加性QTL(在染色体8上的VGT1/2区域)。屈服特征在拨号面板中显示出显着的非加性效果。大多数检测到的产量QTL表现出过度势力或更有可能的伪过分效应。在这些QTL上明显过度污染,导致了遗传组互补性的一部分。环境之间的比较显示,添加QTL效应的稳定性高于非添加效应。我们还揭示了显示遗传群起源作用的大型染色体区域。根据局部杂种群的起源,几个QTL显示出效应的变化。总的来说,我们的结果说明了混合面板如何与专用的GWAS建模相结合,允许识别新的QTL,这些QTL无法通过通过传统建模分析的经典混合面板无法揭示的新QTL。
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年3月3日。 https://doi.org/10.1101/2025.02.28.640868 doi:biorxiv preprint
Faizal Hajamohideen, *Amal Mohammad Abdullah Al Maqbali,Rayyan Abdullah说,Al Handasi,Mahzabee Noorul Hasan Shams Al Dhuha,Mubassareen Noorulhasane Noorulhasan Shams Shams Shams Shams Shams Shams Al Dhuha会议4:可持续教育和人类资本开发和人类资本开发日期:22年2月4日至2月1日:222年2月1日:222年2月1日:222年2月1日。主席:英国英国安格利亚·鲁斯金大学(Anglia Ruskin University)的Kahtan Aziz教授主管工作人员:迪拜科廷大学Nidhi Sehgal博士
csmd1(幼崽和寿司多个域1)是补体级联反应的补体级联反应的重要组成部分。csmd1在中枢神经系统(CNS)中高度表达,其中补体途径的紧急功能调节神经发育和突触活动。虽然神经精神疾病的遗传危险因素,但CSMD1在神经发育疾病中的作用尚不清楚。通过国际变体共享,我们确定了来自六个不同血统家族的八个人的遗传性双重CSMD1变体,这些人出现了全球发育迟缓,智力障碍,小头畸形和多毛糖。我们在早期前脑前脑器类器官中对CSMD1功能丧失(LOF)发病进行了建模,该器官与CSMD1基因敲除人类胚胎干细胞(HESC)区分开。我们表明,CSMD1对于神经上皮细胞结构和同步分化是必需的。总而言之,我们确定了CSMD1在大脑发育和双重CSMD1变体中的关键作用,是先前未固定的神经发育障碍的分子基础。
胞质谷氨酰胺合成酶(GS1)是主要负责玉米叶中的铵同化和重新合并的酶。通过检查酶在叶细胞中酶的过表达的影响,研究了GS1在玉米核产生中的农艺潜力。使用在该领域生长的植物产生并表征了表现出三倍的叶子GS活性增加三倍的转基因杂种。在不同位置,在叶片和束鞘鞘中的叶片和束鞘鞘中的几种过表达GLN1-3(GLN1-3)的基因(GS1)在不同位置生长了五年。平均而言,与对照组相比,转基因杂种中的核产量增加了3.8%。但是,我们观察到,给定领域试验的环境条件和转基因事件同时依赖于这种增加。尽管从一个环境到另一个环境变化,但在不同位置的两个GS1基因(GLN1-3和GLN1-4)多态性区域和核产量之间也发现了显着关联。我们建议使用基因工程或标记辅助选择的GS1酶是产生高屈服玉米杂种的潜在潜在领导者。但是,对于这些杂种,产量增加将在很大程度上取决于用于种植植物的环境条件。
。CC-BY 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2022 年 11 月 16 日发布了此版本。;https://doi.org/10.1101/2022.11.16.516784 doi:bioRxiv 预印本
这项研究分析了F(Q,t)重力框架内的at Rallatar的物理特征,其中Q是非金属标量表,t是能量量张量的痕迹。静态是黑孔的可行替代品,具有中央的保姆核心,周围的薄外壳和Schwarzschild外观中的动态层,将这两个区域分开。使用Finch-Skea度量,得出了核心和壳的必要场方程,而以色列交界处的条件保持了内部和外部区域之间的无缝连接。这项工作广泛探讨了关键方面,例如能量分布,适当的长度,能量条件,熵和状态参数方程。通过有效的电势,红移,因果关系条件和ADIA-BATIC指数来研究模型的稳定性。我们的结果突出了修饰的重力在维持压力杆的结构生存力和稳定性方面的重要作用。
脉冲神经网络 (SNN) 是神经形态计算的一个分支,目前在神经科学应用中用于理解和建模生物大脑。SNN 还可能用于许多其他应用领域,例如分类、模式识别和自主控制。这项工作提出了一个高度可扩展的硬件平台 POETS,并使用它在大量并行和可重构的 FPGA 处理器上实现 SNN。当前系统由 48 个 FPGA 组成,提供 3072 个处理核心和 49152 个线程。我们使用该硬件实现了多达四百万个神经元和一千个突触。与其他类似平台的比较表明,当前的 POETS 系统比 Brian 模拟器快二十倍,比 SpiNNaker 快至少两倍。
语言信息获取的时间动态是理解语言在大脑中如何组织的关键特性之一。不同大脑语言模型之间尚未解决的争论是,语言的构成要素——单词是以顺序方式还是并行方式激活。在本研究中,我们从新颖的角度探讨了这个问题,直接比较了语音生成和感知中单词成分激活的时间过程。在显性对象命名任务和被动听力任务中,我们用单次试验水平的混合线性模型分析了两种语言模式中相同的词汇语义和语音词汇知识引起的事件相关脑电位。结果表明,在刺激开始后 75 毫秒,两种单词成分在生成和感知中同时表现出来;语言模式之间的差异在处理 300 毫秒后才变得明显。这些数据为语言处理的超快速并行动态提供了证据,并在神经组装框架内进行了解释,其中单词在生成和感知过程中招募相同的整合细胞组合。这些词语组合早期并行点燃,之后才以特定行为的方式产生反响。
。CC-BY 4.0 国际许可(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 2 月 13 日发布。;https://doi.org/10.1101/2025.02.08.635393 doi:bioRxiv 预印本