这些材料是初步的、非详尽的,仅供参考,以非排他性方式提供,以响应在 K-12 教育中实施人工智能的考虑需求。这些材料反映了一般见解,并可能根据当前可用的信息提出潜在的考虑选项,这些信息本质上是不确定的,可能会发生变化,但不包含确定未来行动方针所需的所有信息。这些材料中包含的见解和概念尚未经过验证或独立核实。对特定产品或组织的引用仅供说明,并不构成任何认可或推荐。这些材料不构成,也不应被解释为政策、会计、法律、医疗、税务或其他受监管的建议,或对任何特定行动方针的建议。这些材料不是结果的保证,不能依赖。未来结果可能与任何预期、预测或预测的陈述存在重大差异。鉴于技术发展日新月异,这些材料“按原样”提供,不作任何陈述或保证,并且明确声明对任何损失或损害不承担任何责任。接收方对其所有决定、使用这些材料以及遵守适用法律、法规和规定负全部责任。在采取任何具体步骤之前,请考虑寻求法律和其他相关认证/许可专家的建议。
近年来,随着硬件和软件技术的进步,高性能计算取得了长足的发展。计算机的性能按照摩尔定律不断提高,但似乎在不久的将来就会达到极限。量子计算机有可能大大超越经典计算机的性能,因此成为研究的焦点。本研究从理论角度和模拟实现两个方面探讨了经典随机游动与量子游动的区别,并探讨了量子游动在未来的适用性。概述了经典随机游动和量子游动的基本理论,并根据经典随机游动和量子游动的行为和概率分布,比较了它们之间的特征差异。同时,我们使用Qiskit作为量子模拟器实现了量子行走。表示量子行走的量子电路主要由硬币算子、移位算子和量子测量三部分组成。硬币算子表示量子行走中的抛硬币,这里我们使用了Hadamard算子。移位算子表示根据硬币算子的结果进行量子行走的移动。量子测量是提取量子比特的量子态的过程。在一维量子行走中,我们准备了四种情况,作为从两个到五个量子比特位置的量子比特数的差异。在所有情况下,都已看到量子行走的成功实现,这与量子比特的数量和初始状态的差异有关。然后,我们广泛研究了二维量子行走的实现。在二维量子行走中,就每个 x 和 y 坐标位置的量子比特数量而言,准备了三种情况,从两个到四个量子比特。虽然与一维情况相比,问题设置的复杂性大大增加,但可以看出量子行走实现的成功。我们还看到,量子行走的行为和概率分布的扩展在很大程度上取决于初始硬币状态和初始位置的初始条件。本研究证明了量子行走作为解决未来广泛应用中复杂问题的工具的适用性。最后,我们给出了本研究的可能观点和未来展望。
- **服务描述:**我们的专有AI技术平台分析您的个人健康数据,生活方式和目标,以策划定制饮食,运动和补充方案,并为您提供补充方案。无论您是想减肥,增加肌肉,管理特定的健康状况,还是简单地优化您的健康状况,我们的AI系统制作的计划适应您的进度和反馈。
对于具有局部平移不变哈密顿量的任意空间维度的量子自旋系统,我们证明,如果状态是平移不变和空间遍历的,则通过热力学可行的一类量子动力学(称为热操作)从一个量子态到另一个量子态的渐近状态转换完全可以用 Kullback-Leibler (KL) 发散率来表征。我们的证明由两部分组成,用量子信息论的一个分支资源理论来表述。首先,我们证明,任何状态,对于这些状态,最小和最大 Rényi 发散度近似地坍缩为一个值,都可以在小的量子相干源的帮助下通过热操作近似可逆地相互转换。其次,我们证明,对于任何平移不变的遍历状态,这些发散度渐近地坍缩为 KL 发散率。我们通过对量子 Stein 引理的推广来证明这一点,该引理适用于独立同分布 (iid) 情况以外的量子假设检验。我们的结果表明,KL 发散率可作为热力学势,在热力学极限下,包括非平衡和完全量子情况,提供量子多体系统遍历态热力学可转换性的完整表征。
多年来,人工智能 (AI) 一直是教育的一部分,但自 2022 年 11 月发布 ChatGPT 以来,生成式 AI 的引入使 AI 成为有关教育未来的讨论焦点。此次发布以及随后的许多其他生成式 AI 工具引起了教育工作者和学生对这些技术使用的兴趣,同时也引发了对其滥用的担忧。生成式 AI 工具是一种人工智能工具,可根据其在训练数据集中学到的内容生成文本、图像、音频、视频和代码。当用户向模型提供提示时,该模型会预测响应。虽然每个响应都是新的,但模型会从训练阶段分析的数据中提取数据,并根据用户输入或提示将其转换为响应。生成式人工智能最近以前所未有的速度迅速发展,速度之快超过了历史上任何其他技术创新。事实上,一些技术专家预计,未来十年的技术创新将比过去一百年更多。生成式人工智能工具的接受和使用是不可避免的,企业和高等教育机构将期望我们的学生具备生成式人工智能技能。因此,公立学校处理生成式人工智能的方式对教育的未来和今天的学生都有着重大影响。为了帮助指导国家学校领导者负责任地实施人工智能,美国教育部教育技术办公室最近发布了一份题为“人工智能与教学和学习的未来”的报告。本报告引用了 Russell Shilling 博士的话:“人工智能将教育技术带到了一个转折点。我们可以扩大差距,也可以缩小差距,这取决于我们现在采取的行动。”事实上,我们在公立学校使用生成式人工智能的决定将对我们的学生进入高等教育机构或就业市场的未来以及他们的日常生活产生重大影响。世界经济论坛的《2023 年未来就业报告》预测,人工智能将在未来五年对就业市场产生巨大影响。在本报告中,人工智能和机器学习领域是预测最快的领域,未来五年的增长轨迹高达 40%,预计将创造 100 万个新工作岗位。此外,报告发现,75% 的受访公司计划在 2027 年前实施生成式人工智能。
您正在这样做一些示例,请尝试了解什么是“简单但缓慢”的算法,并且速度有多慢?2。证明算法的正确性:在证明算法的正确性之前,您应该确保了解该算法在做什么。为此,选择一个小的特定示例输入(或其中一些),然后手工通过算法运行。在进行此操作时,请考虑为什么要为您的证明而努力直觉。3。分析算法的时间复杂性:与证明正确性一样,您应该首先确保您了解算法在做什么,因此请通过在少量输入上运行的示例来工作!4。证明索赔/定理/引理:在证明某事之前,您应该了解您要证明的是什么。通常您要证明的东西将具有“假设X。然后y。”选择一个X持有的小例子,并试图说服Y在这种情况下也保持。
•下面列出的所有材料都符合威廉姆斯。使用此列表来确保每个学生在定义的课程区域中都有教学材料。•只有标题旁边标有美元标志($)标记的区域装备材料可以使用州教科书资金购买。•在同一所学校任教的所有年级都必须使用同一教科书。例如,所有四年级课程都必须使用同一教科书。•数字访问:所有教科书标题均包括数字资源,除非注释部分中另有说明。
摘要目的:沟通伙伴培训是针对患有脑损伤患者的伴侣的建议干预措施。在本文中,我们根据我们2023年的澳大利亚语音病理学国家会议讲话探讨了传播伙伴培训(CPT)的过去,现在和未来。方法:我们专注于研究团队的贡献,并强调跨中风,创伤性脑损伤(TBI)和痴呆症的研究知识。这项工作以沟通残障人士的声音为基础。CPT旅程中的一个合作伙伴Rosey Morrow,合着者本文。结果:获得的神经系统状况的CPT证据基础正在增长,包括在技术,合作和翻译领域。但是,知识和实施差距仍然存在。结论:CPT的未来将要求我们利用共同设计和技术,同时满足复杂系统的实施挑战,以使所有人进行沟通。
额外资金将主要用于在该行政区现有的药物和酒精服务中建设额外的能力。需要资助的活动包括增加工作人员以支持刑事司法方面的工作、隐藏的伤害 - 成年人和年轻人、同伴支持和改善与健康的联系。其他活动包括静脉切开术项目和药物干预以支持狂饮者或酒精依赖者、Buvidal(一种长效阿片类药物替代品)、外展车的部分资金、康复中心的扩大活动范围以及 SMART(自我管理和康复培训)计划的培训和许可,作为匿名戒酒会 (AA) 的替代方案。
随着量子计算机的日新月异,对隐私构成威胁,大整数分解和离散对数等数学难题将通过 Shor 算法被破解。这将使广泛使用的密码系统过时。由于量子计算的进步,后量子密码学最近大受欢迎。因此,2016 年,美国国家标准与技术研究所 (NIST) 启动了一项标准化流程,以标准化和选择能够抵御量子计算机攻击的加密算法和方案,称为后量子密码学。标准化过程始于 69 份密钥封装机制 (KEM) 和数字签名 (DS) 的提交。4 年后,该流程已进入第三轮(也是最后一轮),有 7 个最终候选方案,其中 4 个是 KEM(CRYSTALS-Kyber、SABER、NTRU、Classic McEliece),其余 3 个提交是 DS(CRYSTALS-Dilithium、FALCON、Rainbow)。标准化过程大部分向公众开放,NIST 要求研究人员从理论和实施的角度研究提交的内容,以确定所提议候选方案的优点和缺点。