由于预训练的深度学习模型大量可用,迁移学习在计算机视觉任务中变得至关重要。然而,从多样化的模型池中为特定的下游任务选择最佳的预训练模型仍然是一个挑战。现有的衡量预训练模型可迁移性的方法依赖于编码静态特征和任务标签之间的统计相关性,但它们忽略了微调过程中底层表示动态的影响,导致结果不可靠,尤其是对于自监督模型。在本文中,我们提出了一种名为 PED 的富有洞察力的物理启发方法来应对这些挑战。我们从势能的视角重新定义模型选择的挑战,并直接模拟影响微调动态的相互作用力。通过捕捉动态表示的运动来降低力驱动物理模型中的势能,我们可以获得增强的、更稳定的观察结果来估计可迁移性。在 10 个下游任务和 12 个自监督模型上的实验结果表明,我们的方法可以无缝集成到现有的排名技术中并提高其性能,揭示了其对模型选择任务的有效性以及理解迁移学习机制的潜力。代码可在 https://github.com/lixiaotong97/PED 上找到。
成簇的规律间隔短回文重复序列 (CRISPR) 基因组编辑革命开启了生命科学的新纪元。本文,我们回顾了最先进的计算在 CRISPR-Cas9 革命中的作用,从早期对低温电子显微镜数据的细化到对大规模构象转变的增强模拟。分子模拟报告了 RNA 结合的机制和具有催化能力的 Cas9 酶的形成,这与随后的结构研究一致。受单分子实验的启发,分子动力学为脱靶效应的发生提供了理论基础,而图论则揭示了变构调控。最后,使用混合量子经典方法建立了 DNA 裂解的催化机制。总体而言,分子模拟在理解 CRISPR-Cas9 的动力学和机制方面发挥了重要作用,有助于理解功能、催化、变构和特异性。
经过 2020 年 12 月开始的多年过程和两轮广泛的公众咨询后,B 公司认证标准的演变过程已进入后期阶段。金融服务业是一个独特而多样化的行业,它拥有独特的商业模式和方法来管理其对社会和地球的(潜在)环境和社会影响。在制定新标准的过程中,我们认识到需要为金融服务业制定量身定制的标准。最初的轨迹是在制定 B 公司的新标准之后或同时制定金融行业的独特标准。因此,目前针对 B 公司的现行标准草案并未充分考虑到该行业的细微差别,可能并不全面适用于金融服务业。
光学涡旋描述的是电磁场中强度消失的奇点。光学涡旋是由电场的相消干涉引起的,在奇点附近,电场的相位从零上升到 2π 的整数倍。人们早在 1931 年就对电磁场中的这种奇点进行了讨论 [1]。然而,随着 Nye 和 Berry 发表了关于波列中位错的开创性论文 [2],以及证明光学涡旋光束实际上携带轨道角动量 [3],这一主题获得了新的发展动力。随着计算机生成的螺旋相位板 [4] 及其动态可编程对应物液晶空间光调制器 [5] 的推出,光学涡旋引起了更多的关注。演示内容包括捕获和旋转粒子[6]、制造微机械泵[7]、存储量子信息[8]、增强显微镜检查[9]等。
应用于知识产权法。然后,我将其在专利法领域的含义与其在版权背景下的潜在意义进行比较。针对我在其他地方提出的关于人工智能、版权和作者身份的论点,我认为……阿博特的法律中立原则很可能会让我们走上错误的道路,导致制定糟糕的版权政策。这揭示了人工智能法律中立默认的问题。在第三部分中,我概述了一种理解技术中立和法律的替代方法,关注的是追求规范目标的一致性,而不是正式的非歧视。这种方法可以潜在地适应阿博特的专利政策建议,而不会对版权产生不良影响。最后,我提出了一种关系方法来规范机器人,我相信这将为法律中立带来急需的规范视角。
传统的放大方法与指南RNA的分子不适应,因此第一作者和前博士后研究员LoϊcBinan制定了一种创新的策略,以在其原始站点生成每个指南RNA的许多本地副本。通过将其与称为Merfish的基于荧光的空间转录组方法结合起来,在空间环境中,witturb-fish可以揭示每个扰动的身份和细胞的转录组。
经过多年的倾向和服务的一切倾向,AI激发了虚拟化和严峻的预算的转变。长期以来被视为整个企业中数字转换的灯塔,IT函数现在正在进行AI转换。由于生成型AI的适用性,用于编写代码,测试软件以及扩大技术人才的一般,具有前瞻性的技术领导者正在利用当前时刻作为曾经蓝色的月球机会,可以在五个支柱上转变它:基础设施,工程,融资,财务运营,人才和创新。随着传统和生成的AI功能的增长,技术的每个阶段都可以看到从负责人的人向人类转向循环中的转变。这样的举动最终可以将其恢复到一种新形式的精益形式,利用公民开发人员和AI驱动的自动化。
生成式、机器学习驱动的交互系统有可能改变人们在创造过程中与计算机交互的方式——将工具变成共同创造者。然而,我们仍然不清楚如何在开放式任务领域实现有效的人机协作。在与机器学习驱动系统的交互中,存在一些已知的沟通挑战。在共同创造系统的设计中,一个被忽视的方面是如何更好地支持用户学习与此类系统协作。在这里,我们将人机协作重新定义为一个学习问题:受团队学习研究的启发,我们假设适用于人机团队的类似学习策略也可能提高与共同创造生成系统合作的人类的协作效率和质量。在本立场文件中,我们旨在促进团队学习,将其作为设计更有效的共同创造人机协作的视角,并强调协作过程质量是共同创造系统的目标。此外,我们概述了在共同创造人工智能系统中嵌入团队学习支持的初步示意图框架。最后,我们提出了一项研究议程,并提出了开放性问题,以供进一步研究,以支持人们学习与生成人工智能系统合作。
SUMMA 基金会由已故的 Carl E. Baum 博士于 1973 年创立,是一家注册的慈善组织,旨在促进高功率电磁学 (HPEM)(也称为 HPRF)领域的科学和教育活动。HPEM 领域源于对高空电磁脉冲 (EMP) 的研究,并发展为研究超宽带 (UWB) 辐射源(现称为中波段辐射)和窄带高功率微波 (HPM) 辐射源(现称为低波段辐射)。如今,该领域包括故意电磁干扰 (IEMI) 源,这对民用基础设施以及各国军队都构成了威胁。SUMMA 基金会于 1973 年首次赞助核 EMP (NEM) 会议,该会议于 1978 年成为两年一次的会议。1994 年,会议在欧洲(法国波尔多)举行,并被命名为 EUROEM。1996 年,会议返回北美,并将其名称从 NEM 更改为 AMEREM。2015 年,该会议在亚洲(韩国济州)举行,并被命名为 ASIAEM。2022 年,在 COVID 大流行之后,会议在阿联酋阿布扎比举行,并被命名为 GLOBALEM。所有后续会议都将被命名为 GLOBALEM,其中 GLOBALEM 2024 将于 2024 年 7 月 14 日至 19 日在美国德克萨斯州奥斯汀举行,由 ETS-Lindgren 主办,后续会议将每两年举行一次。本次演讲将介绍 SUMMA 基金会在国际上倡导 HPRF 研究的活动。此外,本次演讲还将讨论 SUMMA 基金会的工作与 HPRF 发展之间的协同作用。
大脑与行为之间的联系以及如何将这些知识应用于养育复杂的孩子 如何制定有意义的调整措施,让您的孩子减少行为症状 每位家长可以立即采取的步骤,开始从“大脑第一视角”进行养育 点击或扫描注册