欧洲农民使他们能够在获得粮食生产,保护生物多样性和支持农民的收入的同时可持续工作。提出的政策选择是基于对当前和新兴农作物保护实践的评估及其对共同农业政策(CAP)目标的影响。此概述表明,几种作物保护实践正在持续发展,并有可能改善欧洲未来的作物保护。可以成功实施政策选择的可能性取决于他们与利益相关者群体的利益一致的程度。其中包括农民,供应商,供应链合作伙伴,消费者和非政府组织捍卫社会利益。此外,重要的是要将作物保护政策选择嵌入系统的视角。这应该包括相关领域,例如植物检疫政策,整个农作物生产系统,供应链和国际贸易关系 - 必须与作物保护政策保持一致。对于每种作物保护实践,提出了不同的政策选择,以及影响评估。Studju en
技术规格Lightforce开关混合光学机电开关Lightspeed无线技术最多5个在板载内存配置文件PTFE脚V脚电池寿命 - 电池寿命可能会根据用户和计算条件而变化,并计算恒定运动300+小时,使用Lightspeed无线,600+ 600+具有蓝牙跟踪传感器:英雄25K分辨率:100 –25,25,600 dpi max Maxs。加速度:> 40 g在Logitech G240游戏鼠标垫上最大。速度:>在Logitech G240上进行的400 IP
▶Nagarjun Bhat,Agrim Gupta,Ishan Bansal,Harine Govindarajan,Dinesh Bharadia。 div>2024。zensetag:RFID辅助双标签单
WPT系统的耦合系数公式为:$$ k = \ frac {m} {\ sqrt {l_t \ times l_r}} $$ ..WPT的效率随耦合系数的提高。当一个线圈的所有磁通线切开第二个线圈的所有磁通线时,就会发生完美的耦合(k = 1),从而导致相互电感等于两个个体电感的几何平均值。这会导致满足关系$$ \ frac {v_1} {v_2} = \ frac {n_1} {n_2} $$的感应电压。图11提出了一种动画可视化,展示了磁通密度对发射器和接收器线圈之间气隙距离变化的响应。参数AC磁研究生动地证明了反相关关系:随着气隙距离的增加,磁通量密度达到二次线圈的降低,反之亦然。
B. Tharun Kumar先生1,Yaski Vamshi先生2,M。Teja3先生,J。Mohan博士4. Electronics and Communication Engineering部门,航空工程学院,海德拉巴,邓达巴德(Dundigal-500043)摘要:在本文中,一项新技术据称是一项新技术,该技术被无线电车充电站系统。在此过程中,它经过测试并验证了电动汽车的电池充电器。在可持续运输领域开发的无线电动汽车充电技术涉及无线充电电动汽车领域。此过程是电感功率传输,将能量从充电垫发送到电动汽车的电池,而无需提供任何电线或适配器。无线充电的好处包括便利性,因为不需要物理连接器,它会降低充电端口的磨损;消除可能导致电击的环境因素的暴露的安全性。通过充电器和电线的电池电量充电是方便,危险和昂贵的。目前的汽油和汽油发动机技术车辆还会造成空气和噪声污染,此外还有助于温室气体。本文通过电感耦合方法呈现电池的无线电池充电站。在此部分中,在使用MOSFET并控制开关操作的发射机线圈和接收器线圈之间使用了一个驱动电路。因此,确保在发射器线圈中以及每当车辆不存在时打开和关闭。该电台可实现67%的效率水平,可靠性,可靠性,低维护和较长的产品寿命。关键字:电源传输;电vechile;电池充电;无线充电等
www.nxp.com NXP和NXP徽标是NXP B.V.的商标。所有其他产品或服务名称均为其各自所有者的属性。相关技术可以受到任何或全部专利,版权,设计和商业秘密的保护。保留所有权利。©2025 NXP B.V.
摘要 - 大语言模型(LLMS)中的前进已导致其广泛采用和在各个领域的大规模部署。但是,由于其大量的能耗和碳足迹,它们的环境影响,尤其是在推断期间,已经成为人们越来越关注的问题。现有研究仅着眼于推理计算,忽视了网络辅助LLM服务系统中碳足迹的分析和优化。为了解决这一差距,我们提出了AOLO,这是一个用于低碳导向的无线LLM服务的分析和优化框架。AOLO引入了全面的碳足迹模型,该模型量化了整个LLM服务链中的温室气体排放,包括计算推理和无线通信。此外,我们制定了一个优化问题,旨在最大程度地减少整体碳足迹,该碳足迹是通过在体验质量和系统性能限制下的关节优化推理输出和传递功率来解决的。为了实现这种联合优化,我们通过采用SNN作为参与者网络来利用尖峰神经网络(SNN)的能源效率,并提出了一种低碳导向的优化算法,即基于SNN的基于SNN的深度加固学习(SDRL)。全面的模拟表明,与基准软批评者相比,SDRL算法显着降低了整体碳足迹,降低了18.77%,突出了其实现更可持续的LLM推理服务的潜力。
背景:糖尿病性视网膜病(DR)是威胁性糖尿病的微血管并发症。慢性炎症和内皮功能障碍是疾病发病机理中的关键因素。因此,为减少视网膜炎症而开发的干预措施预计将对DR的预防和治疗有益。在本研究中,我们开发了一类具有有效抗炎活性的无药肽的纳米杂化剂,并研究了其在氧气诱导的视网膜病变(OIR)小鼠模型和链蛋白酶(STZ)诱导的糖尿病小鼠模型中治疗DR的治疗功效。方法:六肽被用于修饰金纳米颗粒以形成基于药物的基于药物的纳米杂交(P12)。然后,我们检查了p12在HUVEC和BV2细胞中的理化特性和抗炎活性,并确定了这种新型生物活性的关键氨基酸。应用玻璃体内和恢复轨道注射以确定P12的最佳视网膜输送途径。使用OIR模型和STZ诱导的糖尿病模型研究了p12治疗DR的治疗功效。通过免疫组织化学和流式细胞仪分析,我们确定了在视网膜中内化p12的主要细胞。 此外,还使用体外实验来探索p12抗炎活性的基本分子机制。 结果:我们发现P12在HUVEC和BV2细胞中均表现出有效的抗炎作用。 此外,可以通过玻璃体内注射有效地将p12有效地输送到视网膜。通过免疫组织化学和流式细胞仪分析,我们确定了在视网膜中内化p12的主要细胞。此外,还使用体外实验来探索p12抗炎活性的基本分子机制。结果:我们发现P12在HUVEC和BV2细胞中均表现出有效的抗炎作用。此外,可以通过玻璃体内注射有效地将p12有效地输送到视网膜。玻璃体内注射的p12显着改善了早期DR症状,包括STZ诱导的糖尿病小鼠的血管泄漏和周细胞损失。它还抑制了OIR小鼠的病理新生血管形成和视网膜出血。重要的是,我们发现玻璃体内注射的p12主要由小胶质细胞和内皮细胞吸收,从而导致视网膜内皮炎症和DR动物模型中的小胶质细胞激活减少。机理研究表明,p12在内皮细胞和小胶质细胞中都有效抑制了几种TLR4下游信号通路,例如NF-κB,JNK和P38 MAPK。这种效应是由于p12在阻止内体TLR信号转导的内体酸化过程中的能力。结论:我们的发现表明,局部注射经过适当设计的,无药,基于肽的纳米杂交可以作为治疗DR的安全有效的抗炎纳米医学。